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Causality

Is it possible to recover a causal relationship from observational dataset?



Graphical models

Judea Pearl (UCLA) and his book Causality.



Graphical models

Unified setup on how to think about causality.
Every problem is visualized in terms of a causal graph.
It is easier to think about a problem once you have a graph that visualize the
relationships.

It provides a set of rules that show when and how it is possible to identify
causal effects.
This set of rules may be automated.
It makes the thinking about the identification easier.



X

D Y

The relationship of D and Y is of
interest
D and Y are associated directly
D and Y are associated indirectly via X



X

D Y

The relationship of D and Y is of
interest
D and Y are associated directly
D and Y are associated indirectly via X
X is a confounder



Notation

X

D Y

Node
Edge
Path
Directed path
Parent/Child
Ascendant/Non-ascendats
Acyclic graph



Directed Acyclic Graphs - DAGs

Directed - arrows have direction
Acyclic - there does not exist a cycle in this graph. Causality is an
asymmetric concept
Graphs - object that encodes the causal structure of the problem



Direct effect
X

D Y

P(y ,d ,x) is the joint distribution
(shorthand for P(Y = y ,D = d ,X = x))
P(x |d ,y) = P(x)
(no edge between X and Y ,D)

testable implications
P(y ,d ,x) = P(x)︸︷︷︸

P(x |parx )

· P(d)︸︷︷︸
P(d |pard )

· P(y |d)︸ ︷︷ ︸
P(y |pary )

=⇒ P(y ,d ,x) = P(x) ·P(y ,d) and

therefore

X ⊥⊥ (D,Y )



Bayesian factorization

X

D Y

P(y ,d ,x) = P(x)︸︷︷︸
P(x |parx )

· P(d)︸︷︷︸
P(d |pard )

· P(y |d)︸ ︷︷ ︸
P(y |pary )

or in general

P(x1,x2, · · · ,xn) = P(x1|parx1) ·P(x2|parx2) · · ·P(xn|parxn)



Given its parents, the variable is independent of all of its non-descendants.

Every parent is a direct cause of all its children.



Effect in reverse direction

X

D Y

P(y ,d ,x) is the joint distribution
P(x |d ,y) = P(x)
(no edge between X and Y ,D)

testable implications
P(y ,d ,x) = P(x) ·P(d |y) ·P(y) =⇒ P(y ,d ,x) = P(x) ·P(y ,d) and therefore

X ⊥⊥ (D,Y )



Confounded effect

Graph includes information about independencies

X

D Y

P(y ,d ,x) is the joint distribution

No testable implications.



Direct and Indirect effect

X

D Y

P(y ,d ,x) is the joint distribution

No testable implications.



No effect (fork)

X

D Y

P(y ,d ,x) is the joint distribution
P(d |x ,y) = P(d |x)
(no edge between D and Y )

testable implications
P(y ,d ,x) = P(x) ·P(y |x) ·P(d |x) =⇒ P(y ,d |x) = P(y |x) ·P(d |x) and
therefore

Y ⊥⊥ D|X



Indirect effect via X (chain)

X

D Y

P(y ,d ,x) is the joint distribution
P(y |x ,d) = P(y |x)
(no edge between D and Y ))

testable implications
P(y ,d ,x) = P(x |d) ·P(d)︸ ︷︷ ︸

=P(d |x)·P(x)

·P(y |x) =⇒ P(y ,d |x) = P(y |x) ·P(d |x) and therefore

Y ⊥⊥ D|X



So far, we have seen that very different setups (in terms of direction of
effects) have the same testable implications.
Graphs are helpful if we want to study their implications for statistical
independencies.
Graphs alone are not sufficient, we need to equip this setup with something
else in order to talk about causality.



Collider (immorality)

X

D Y

P(y ,d ,x) is the joint distribution
P(y |x ,d) = P(y |x)
(no edge between D and Y ))

testable implications
P(y ,d ,x) = P(x |d ,y) ·P(d) ·P(y) =⇒︸︷︷︸

sum across x

P(y ,d) = P(y) ·P(d) and therefore

Y ⊥⊥ D



Collider (immorality) continued

X

D Y

Conditioning induces dependence
Conditioned on X , previously
independent D and Y are now
dependent.

testable implications
P(y ,d ,x) = P(x |d ,y) ·P(d) ·P(y) ≠⇒ P(y ,d |x) = P(y |x) ·P(d |x) and
therefore

Y ̸⊥⊥ D|X



Example 1 (collider bias) - known as ”Bad controls”

Griffith, Gareth J., et al. ”Collider bias undermines our understanding of

COVID-19 disease risk and severity.” Nature communications 11.1

(2020): 1-12.

S

X1 X2

X1 - academic ability
X2 - sporting ability
S - admitted to university



Example 2 (collider bias)

Z

X Y

U
X - maternal smoking
Y - infant mortality
Z - birth-weight
U - unobserved risk factors (e.g.
birth-defects, malnutrition)

Hernández-Dı́az, Sonia, Enrique F. Schisterman, and Miguel A. Hernán. ”The birth weight “paradox” uncovered?.” American journal of epidemiology

164.11 (2006): 1115-1120.



Example 3 (collider bias) - Obesity paradox

Z

X Y

U X - obesity
Y - mortality
Z - heart-failure
U - unobserved risk factors (e.g.
genetic factors, lifestyle
behaviour)

Banack, Hailey R., and Jay S. Kaufman. ”The “obesity paradox” explained.” Epidemiology 24.3 (2013): 461-462.



Example 4 (collider bias) - Gender wage gap

X

D Y

U
D - gender
Y - log wages
X - {education, work
experience, occupation}
U - unobserved variables

Blau, Francine D., and Lawrence M. Kahn. ”The gender wage gap: Extent, trends, and explanations.” Journal of economic literature 55.3 (2017): 789-865.



Example 5 (collider bias) - Nutrition/height puzzle

X

D Y

D - childhood nutrition
Y - adult height
X - in military

Schneider, Eric B. ”Collider bias in economic history research.” Explorations in Economic History 78 (2020): 101356.



All these examples show the importance of the causal structure of the
problem at hand.

Conditioning on certain variables may (or may not) induce an association
that is not of interest.

Failing to condition on the right variables may result in a mixed set of
associations - also not of interest.



More notation to come...

Blocked path
D-separation
Causal vs non-causal association
Manipulated graph
Intervention - ”do-operator”
Sufficient adjustment set
Structural Causal Models
Endogenous vs exogenous variables



Blocked path

Any path p is blocked by a set of variables B if:
(1) p contains a chain or a fork, such that the middle node is in B

or
(2) p contains a collider, such that neither the middle node is in B, nor any

of its descendants, are in B



Blocked path

X1

D Y

X2 X3

X4 X5 X6

M

X7



d-separation
For a given graph G, let us have three disjoint sets of variables B1,B2,B3:

B1 and B2 are d-connected by B3 ⇐⇒ there exists an undirected path p
between some vertex in B1 and some vertex in B2 such that for every
collider C on p, either C or a descendant of C is in B3, and no non-collider on
p is in B3.

B1 and B2 are d-separated by B3 ⇐⇒ B1 and B2 are not d-connected by B3

B1 and B2 are d-separated by B3 ⇐⇒ if B3 blocks every path between B1

and B2



{D} and {Y} are d-connected by {X5}. There are 3 paths.

X1

D Y

X2 X3

X4 X5 X6

M

X7



{D} and {Y} are d-separated by {X1,M}. All three paths are blocked..

X1

D Y

X2 X3

X4 X5 X6

M

X7



d-separation and statistical independence

Notation:
(B1 ⊥⊥ B2|B3)G ⇐⇒ B1 and B2 are d-separated by B3 in a graph G

=⇒ B1 ⊥⊥ B2|B3

D-separation implies statistical independence
(assuming that the graph is correct).



X1

D Y

X2 X3

X4 X5 X6

M

X7

non-causal association

non-causal association

causal association



X

D Y

non-causal association

causal association

X

D Y
causal association

causal association



Intervention - ”do-operator”

X

D Y

X

D Y

Manipulating D to be equal to d

do(D = d)

removes all the parents from nod D and sets P(D = d) = 1.



Intervention - ”do-operator”
Manipulating D to be equal to d

do(D = d)

removes all the parents from nod D and sets P(D = d) = 1.

It induces an interventional distribution:

P(Y ,X |do(D = d))

which can be used to define potential outcomes:

E [Y (d)]



Three different causal graphs

X

D Y

non-causal association

causal association

X

D Y

causal association

causal association

X

D Y

causal association

non-causal association



Controlling for X

X

D Y

blocked

causal association

X

D Y
causal association

blocked

X

D Y
causal association

open



Not-controlling for X

X

D Y

open

causal association

X

D Y
causal association

open

X

D Y
causal association

blocked



Back-door criterion
A set of variables B satisfies the back-door criterion if it:

blocks all spurious paths (non-causal, non-directed) from D to Y

does not block any of the causal paths from D to Y

does not open any spurious paths (via colliders or their descendants)

Then

E [Y (d)] = E [Y |do(D = d)] = E [E [Y |D = d ,B]︸ ︷︷ ︸
random (due to B)

]

thus we get the mean of potential outcome Y (d) from non-experimental
data (!)

(Note: The outer expectation is taken with respect to B.)



Back-door criterion

X

D Y

blocked

causal association

X

D Y
causal association

blocked

X

D Y
causal association

causal association

B = {X}

E [Y (d)] =E [E [Y |D = d ,X ]]

B = {}

E [Y (d)] = E [Y |D = d ]

B = {}

E [Y (d)] = [E [Y |D = d ]



Example 6: Different conclusions based on the same data

D Y

X
X - management position
D - gender or lifestyle
Y - wage

Causal structure matters. Very different conclusions can be reached from
the same data.

Paul Hunermund’s course: https://www.udemy.com/course/causal-data-science/



Example 6a:

D Y

X
X - management position
D - gender
Y - wage

E [Y (d)] = E [Y |D = d ] = ∑
x∈{0,1}

E [Y |D = d ,X = x]Pr(X = x |D = d)

Paul Hunermund’s course: https://www.udemy.com/course/causal-data-science/



Example 6b:

D Y

X
X - management position
D - lifestyle
Y - wage

E [Y (d)] = E
[
E [Y |D = d ,X ]

]
= ∑

x∈{0,1}
E [Y |D = d ,X = x]Pr(X = x)

Paul Hunermund’s course: https://www.udemy.com/course/causal-data-science/



Example 6a:

♀ ♂
Not manager 3163 (87) 3015 (59)

Manager 5592 (13) 5319 (41)

X - management position
D - gender
Y - wage

E[Y (♀)] = ∑
x∈{0,1}

E[Y |D = ♀,X = x]Pr(X = x |D = ♀) = 3163 ·0.87+5592 ·0.13 = 3478.77

E[Y (♂)] = ∑
x∈{0,1}

E[Y |D =♂,X = x]Pr(X = x |D =♂) = 3015 ·0.59+5319 ·0.41 = 3959.64

E[Y (♀)−Y (♂)] = 3478.77−3959.64 =−480.87

Paul Hunermund’s course: https://www.udemy.com/course/causal-data-science/



Example 6b:

, /

Not manager 3163 (87) 3015 (59)
Manager 5592 (13) 5319 (41)

X - management position
D - lifestyle
Y - wage

E[Y (,)] = ∑
x∈{0,1}

E[Y |D =,,X = x]Pr(X = x) = 3163 · 87+59
200

+5592 · 13+41
200

= 3818.83

E[Y (/)] = ∑
x∈{0,1}

E[Y |D =/,X = x]Pr(X = x) = 3015 · 87+59
200

+5319 · 13+41
200

= 3637.08

E[Y (,)−Y (/)] = 3818.83−3637.08 = 181.75

Paul Hunermund’s course: https://www.udemy.com/course/causal-data-science/



Do-calculus

Back-door criterion is only an application of one of the three rules of
”do-calculus”

There are three rules that provide exhaustive manipulation with do-operator

this whole process can be fully automated (!)
yes, that’s correct, automated!



1. Ignoring observations

P(y |z,do(x),w) = P(y |do(x),w) ⇐⇒ (Y ⊥⊥ Z |W ,X)GX̄︸ ︷︷ ︸
remove all the arrows pointing into X

2. Treating interventions as observations

P(y |do(z),do(x),w) = P(y |z,do(x),w) ⇐⇒ (Y ⊥⊥ Z |W ,X)GX̄ ,Z︸ ︷︷ ︸
remove all the arrows pointing from Z

3. Ignoring interventions

P(y |do(z),do(x),w)=P(y |do(x),w) ⇐⇒ (Y ⊥⊥ Z |W )GX̄ ,Z̄(W)︸ ︷︷ ︸
remove all the arrows pointing into Z(W )

that are not ancestors of W



Back-door criterion?

P(y |do(x)) = P(y |do(x),z) ·P(z|do(x))︸ ︷︷ ︸
Chain rule

= P(y |x ,z) ·P(z|do(x))︸ ︷︷ ︸
Rule 2

= P(y |x ,z) ·P(z|{})︸ ︷︷ ︸
Rule 3

= P(y |x ,z) ·P(z)︸ ︷︷ ︸
Backdoor criterion

Note that: do(x) is a shorthand notation for do(X = x).
This is an event: ”X is manipulated to be equal to x”



X1

D Y

X2 X3

X4 X5 X6

M

X7

D = fD(X1)

M = fM(M)

Y = fY (M)

X1 = f1(X2)

X2 = X2

X3 = f3(X2)

X4 = f4(D)

X5 = f5(X4,X6)

X6 = f6(Y )

X7 = f7(X5)



Structural causal models

X1

D Y

X2 X3

X4 X5 X6

M

X7

U1 U2 U3

UM
U4

U5
U6

UY

U7

UD

D = fD(X1,UD)

M = fM(M,UM)

Y = fY (M,UY )

X1 = f1(X2,U1)

X2 = f2(U2)

X3 = f3(X2,U3)

X4 = f4(D,U4)

X5 = f5(X4,X6,U5)

X6 = f6(Y ,U6)

X7 = f7(X5,U7)

U ∼ P



Modified Structural Causal Model

X

D Y

UD

UX

UY X

D=d Y

UX

UY



Modified Structural Causal Model

D = fD(X ,UD)

X = fX (UX )

Y = fY (D,X ,UY )

D = d

X = fX (UX )

Y = fY (D,X ,UY )



Example 7 (unobserved confounders) - Returns to
education

U

D Y

D - education
Y - log wages
U - unobserved ability

We cannot close the backdoor path via U because it is unobserved.



Example 8: Human Capital Model (Becker 1994)

X

Z YD

U

Z - parental education
D - education
Y - log wages
X - family income
U - unobserved background
characteristics

Conditioning on X closes all the backdoor paths.



Example 9: Human Capital Model (Becker 1994) - ver.2

X

Z YD

U

Z - parental education
D - education
Y - log wages
X - family income
U - unobserved background
characteristics

Not possible to close the backdoor path via U as it is unobserved



Example 10: Schooling again

YD

U1

X

U2
D - education
Y - log wages
X - family income
U1 - unobserved mother’s
characteristics
U2 - unobserved father’s
characteristics

conditioning on X makes things even worse as it opens up two new paths



Example 11: Discrimination

X

D Y

UG G - gender
D - discrimination
X - occupation
Y - log wages
U - unobserved ability

conditioning on X closes the mediated path but it opens up a new path
D← X ← U→ Y



Example 12: Covid risk factors

D Y

X1

X2

X1 - smoking
X2 - frailty
D - Covid hospitalization
Y - death

looking at the hospitalized patients only (conditioning on D) induces
spurious correlation among different independent(!) risk factors: smoking
(X1) and frailty (X2)

https://www.hdruk.ac.uk/news/we-should-be-cautious-about-associations-of-patient-characteristics-with-covid-19-outcomes-that-are-identified-in-

hospitalised-patients/



Example 13: Age adjustment for Vaccine effectiveness

D Y

X
X - age
D - vaccination
Y - severe Covid

Adjusting for age closes the back-door path.

https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated



Example 14 - many confounders

D Y

X5

X3

X1
X2

X6

X8

X7
X9

X4

X1,X2, · · · - controls
D - treatment
Y - outcome

We can hopefully close all the
backdoor paths.

How plausible is this model?



Example 15 - Gender wage gap decomposition

Y - wage
G - gender
X - educ., work exp., occup., region... (in 1998)
W - parent’s education, foreign born (in 1979)

Fig 2 and 3 from Huber, Martin. ”Causal pitfalls in the decomposition of wage gaps.” Journal of Business & Economic Statistics 33.2 (2015): 179-191.



Example 16 - Mitigating measures and Covid-19

Ii,t - information
Pi,t - adopted policies
Wi,t - unobserved confounding factors
Bi,t - behavior variables
Yi,t+l - future health outcomes

Fig 4 from Chernozhukov, Victor, Hiroyuki Kasahara, and Paul Schrimpf. ”Causal impact of masks, policies, behavior on early covid-19 pandemic in the

US.” Journal of econometrics 220.1 (2021): 23-62.



Lessons to take:
causal structure is important
beware of colliders
working with causal models could be useful, it may clarify your thinking
there are different views on how useful the whole DAG literature is
(Epidemiology, CS vs Economics)



Further topics

maybe I cannot manipulate D, but I can manipulate Z (surrogate
experiments)
there are tools for addressing external validity (transportability)
from the data it is possible to create class of admissible DAGs (causal
discovery)
this is currently an area of active research in CS and it seems to be
slowly leaking into economics



Thank you for your attention!
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