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Statistical inference deals with the problem of quantifying uncertainty.

By uncertainty we mean the statistical uncertainty, not the model
uncertainty.

Given the fact that our sample size is limited. How sure/unsure are we
regarding our parameter estimate?



Example 1 - Tossing a coin
We observe the following

0000010000100100000001000010010100 · · ·0001000010000︸ ︷︷ ︸
500 tosses

97 heads, 403 tails.
These are independent coin flips of a single coin with a fixed probability of
showing the head.

Pr(C = 97) =

(
500
97

)
p97(1−p)403

Is it fair?
If p = 0.5 we would see 97 heads with probability 9.31491 ·10−46

(strictly mathematically speaking: not a whole lot)



Example 1 - Tossing a coin

What value of p is the most likely?

Find the one that makes Pr(X = 97) most likely.





Example 2 - Challenger Disaster



Yi ∼ Bern(pi)

Yi ⊥ Yj

Fi = ∑
6
i=1 Yi ∼ Bin(6,pi)

g(pi) = β0 +β1tempi







pi = β0 +β1tempi + εi

??? but p̂i may lie outside [0,1].

What about

g(pi) = β0 +β1tempi

? E.g.

log

(
pi

1−pi

)
= β0 +β1tempi

OK, but where is the random component εi?



ni

number of independent Bernoulli trials
pi

probability of each Bernoulli trial
yi

number of occurrences of events ∈ {0,1, ...,ni}

yi ∼ Bin(ni ,pi)

Now, the probabilistic description is complete! Everything is now known,
except for unknown parameters β0,β1



Challenger data
ni = 6
number of o-rings (whose failures are independent)
pi = g−1(β0 +β1tempi)
probability of a failure of each o-ring
yi

number of failed o-rings ∈ {0,1, ...,6}



Event 1: 6 o-rings, 1 failure, 18.3 temperature

Pr(Y1 = 1) =

(
6
1

)
p1

1(1−p1)
5 p1 = g−1(β0 +β1.18.3)

Event 2: 6 o-rings, 2 failures, 11.3 temperature

Pr(Y2 = 2) =

(
6
2

)
p2

2(1−p2)
4 p2 = g−1(β0 +β1.11.3)

...

Event n: 6 o-rings, 0 failures, 20.6 temperature

Pr(Yn = 0) =

(
6
0

)
p0

n(1−pn)
6 pn = g−1(β0 +β1.20.6)



Probability of observing (y ,X) given parameter values (β0,β1)

L(β0,β1|y ,X) = Pr(Y1 = y1) ·Pr(Y2 = y2) ·Pr(Y3 = y3) · · · · ·Pr(Yn = yn)

=
n

∏
i=1

Pr(Yi = yi)

=
n

∏
i=1

(
ni

yi

)
pyi

i (1−pi)
ni−yi

logL(β0,β1|y ,X) =
n

∑
i=1

log

(
ni

yi

)
+ yi log(pi)+(ni − yi) log(1−pi)

What is the likelihood of observing the data?

Set (β̂0, β̂1) in order to maximize logL(β0,β1|y ,X)



Example 3 - waiting time

We observe inter-arrival times of a insurance claims (in days).

2.07 5.06 6.51 1.75 13.95 2.55 . . . 18.03 1.92 1.03︸ ︷︷ ︸
100 observations

These may be exponentially distributed.

what value would fit the data best?



Notation

X random variable
X1, ...Xn iid from parametric distribution f (x |θ )
θ ∈Θ unknown parameter to be estimated. The true value is denoted
as θ0.

Example:
X ∼ Exp(λ )

f (x |λ ) = exp(−x/λ )/λ

λ ∈ [0,∞) unknown parameter to be estimated. The true value is
denoted as λ0.



Likelihood function: Ln(θ )≡ f (X1|θ ) · ... · f (Xn|θ ) = ∏i f (Xi |θ )
unlike density f it is a function of a parameter θ with data kept fixed
i.i.d. is crucial

Example:

Ln(λ ) = ∏
i

(
1
λ
exp

(
−Xi

λ

))
=

1
λ n exp

(
−nX̄n

λ

)



Maximum likelihood estimator: θ̂ ≡ argmaxθ Ln(θ )

what parameter value can rationalise the given data best?
the estimator is a random variable, because the data is random
has some favourable statistical properties
can be computed analytically or numerically

Example:
We need to solve F.O.C.:

0 =
∂

∂λ
Ln(λ ) =−n

1
λ n+1 exp

(
−nX̄n

λ

)
+

1
λ n exp

(
−nX̄n

λ

)
nX̄n

λ 2

λ̂ = X̄n



Log-likelihood function: ℓn(θ )≡ logLn(θ ) = ∑i log f (Xi |θ )
Numerically more stable.
argmaxθ ℓn(θ ) = argmaxθ Ln(θ )

Example:

ℓn(λ ) = ∑
i
log f (Xi |θ ) = ∑

i

(
− logλ − Xi

λ

)
=−n logλ − nX̄n

λ







Expected log density ℓ(θ )≡ E [log f (X |θ )]
under correct specification we have likelihood analog principle:
θ0 = argmaxθ l(θ )

Example:

ℓ(θ ) = E [log f (X |θ )] = E [− logλ −X/λ ] =− logλ − E [X ]

λ
=− logλ − λ0

λ

FOC gives 0 = 1
λ
+ λ0

λ 2 which has an unique solution λ = λ0.



Score function: Sn(θ )≡ ∂

∂θ
ℓn(θ ) = ∑i

∂

∂θ
log f (Xi |θ )

How sensitive is the likelihood to θ

for interior solution we have Sn(θ̂ ) = 0

Example:

Sn(λ ) =
∂

∂λ

(
−n logλ − nX̄n

λ

)
=− n

λ
+

nX̄n

λ 2





Likelihood Hessian: Hn(θ )≡− ∂ 2

∂θ∂θ T ℓn(θ ) =−∑i
∂ 2

∂θ∂θ T log f (Xi |θ )
tells us how curved is the log-likelihood

Example:

Hn(λ ) =− ∂ 2

∂λ 2 ℓn(λ ) =− ∂

∂λ
Sn(λ ) =− n

λ 2 +
2nX̄n

λ 3







Efficient score: S ≡ ∂

∂θ
log f (X |θ0)

derivative of a log-likelihood of a single observation
mean zero random vector
E [S] = E

[
∂

∂θ
log f (X |θ0)

]
= ∂

∂θ
E [log f (X |θ0)] =

∂

∂θ
ℓ(θ0) = 0

Example:

S =
∂

∂λ
log f (X |λ0) =− 1

λ0
+

X
λ 2

0
.

E [S] =− 1
λ0

+
E [X ]

λ 2
0

=− 1
λ0

+
λ0

λ 2
0
= 0



Fisher information: Jθ ≡ E [SST ]

variance of the efficient score S

Example:

Jλ = E [S2] = Var [S]︸ ︷︷ ︸
E[S]=0

= Var

[
− 1

λ0
+

X
λ 2

0

]
=

1
λ 4

0
Var [X ] =

1
λ 2

0



Expected Hessian: Hθ ≡− ∂ 2

∂θ∂θ T ℓ(θ0)

under regularity conditions Hθ =−E
[

∂ 2

∂θ∂θ T log f (X |θ0)
]

Example:

Hθ =− ∂ 2

∂λ 2 ℓ(λ )|λ=λ0
=− ∂ 2

∂λ 2

(
− logλ − λ0

λ

)
|λ=λ0

=
1

λ 2
0



Under correct specification of f (x |θ ) (there exists some θ0 ∈Θ so that
f (x |θ0) = f (x)), we have Information Matrix Equality:

Jθ = Hθ

Example:

Jλ =
1

λ 2
0
= Hλ



MLE has some interesting properties
invariant to transformations
asymptotically efficient in the class of unbiased estimators (even for
transformations)
consistent
asymptotically normal



MLE is invariant to transformations
θ̂ is the MLE of θ =⇒ β̂ = h(θ̂ ) is the MLE of β = h(θ )



MLE asymptotically achieves Cramer-Rao Lower Bound
Under (i) correct specification, (ii) support of X not being dependent on
θ and (iii) θ0 lying in the interior of Θ
For any unbiased θ̃ we have that

Var [θ̃ ]≥ (nJθ )
−1

For transformation β = h(θ ) (under some more regularity conditions)
we get that for any unbiased estimator β̃ of β :

Var [β̃ ]≥ 1
n

HT J−1
θ

H

where H = ∂

∂θ
h(θ0)

T .



Average log-likelihood: ℓ̄n(θ )≡ 1
nℓn(θ ) =

1
n ∑i log f (Xi |θ )

MLE is consistent, θ̂ →P θ under these conditions:
Xi are i.i.d.
E |log f (X |θ )| ≤ G(X), with E [G(X)]< ∞

log f (X |θ ) is continuous in θ with probability one
Θ is compact
∀θ ̸= θ0 : l(θ )< l(θ0) (so that the parameter θ is identified)



MLE is asymptotically normally distributed

Why? Taylor expansion around θ0:

0 =
∂

∂θ
ℓ̄n(θ̂ )≈

∂

∂θ
ℓ̄n(θ0)+

∂ 2

∂θ∂θ T ℓ̄n(θ0)(θ̂ −θ0)

√
n(θ̂ −θ0)≈

(
∂ 2

−∂θ∂θ T ℓ̄n(θ0)

)−1

︸ ︷︷ ︸
→P H−1

θ

(√
n

∂

∂θ
ℓ̄n(θ0)

)
︸ ︷︷ ︸

→D N(0,Jθ )︸ ︷︷ ︸
→D N(0,H−1

θ
Jθ H−1

θ
) = N(0,J−1

θ
)



OLS is MLE under normal errors

y = Xβ + ε

if we assume that ε ∼ N(0,σ2I)
then we get that

β̂MLE = (X T X)−1X T y

and

σ̂
2 =

1
n

ε̂
T

ε̂



ML (back to linear regression with a single x )

yi = β0 +β1xi + εi , εi ∼ N(0,σ2)

=⇒ yi ∼ N(β0 +β1xi ,σ
2)

L(β0,β1,σ
2|y ,X) =

n

∏
i=1

f (yi |β0,β1,σ
2).

logL(β0,β1,σ
2|y ,X)=−n

2
log2π︸ ︷︷ ︸

constant

−n logσ
2︸ ︷︷ ︸

does not depend on β0,β1

− 1
2σ2 ∑

i=1
(yi − (β0 +β1xi))

2

To maximize likelihood = to minimize sum of squares of residuals



Bootstrap



Example - rolling a dice (again)



Data is all we have

F̂n → F

we wish to understand sample variation, but we don’t have F

at least we have our data F̂n

use our F̂n to simulate new ”bootstrap” datasets







Bootstrap in understanding the sample variation

Suppose we are considering choosing between two different estimators
β̃ and β̂

These may possess different qualities

The question is: Given that you have to pick only once, which one
would you choose??





Assume we are in some of the following situations
small data sample =⇒ Asymptotic approximations are unreliable (Ex:
n = 15 in linear regression)
our estimator is complex and we can’t even derive asymptotic
approximation (Ex: result of a numerical optimization)
asymptotic distribution depends on the unknown parameter (Ex:
X1,X2, ...,Xn ∼ f (.), sample median m̂ ∼ N

(
m, 1

4nf (m)2

)
)

traditional estimator is based on dubious assumptions (Ex: stock
returns may have fat tails)



*Example - Stamp thickness



One mode at ĥ1 = 0.0068.

H0 : number of modes = 1

Natural candidate is f̂ (t; ĥ1).
We will ”improve” f̂ (t; ĥ1) so that it has the same variance as our data. The
new one is ĝ(·; ĥ1) (we applied variance stabilizing transformation).

ASLboot = Pĝ(·;ĥ1)

(
ĥ∗1 > ĥ1

)
,

(achieved significance level) and ĥ∗1 is the smallest smoothing parameter so
that the distribution is unimodal.



We sample from a smooth distribution ĝ(·; ĥ1), not F̂n, hence is it a smooth
bootstrap.

We need to sample from ĝ(·; ĥ1), which has the variance σ̂2 and expected
value equal to the rv from f̂ (t; ĥ1).

How? We achieve this in the following way: we draw a bootstrap sample
y∗

1 , ...,y
∗
n from F̂n and set

x∗
i = ȳ∗+(1+ ĥ2

1/σ̂
2)1/2(y∗

i − ȳ∗+ ĥ1εi). (1)



Example with Stamps: Algorithm

Step 1 Draw B bootstrap datasets z ĝ(·; ĥ1) using (1)
Step 2 For each bootstrap dataset we calculate the smallest smoothing

parameter so that the distribution is unimodal.. Denote these B values
as ĥ1(1), ..., ĥ1(B).

Krok 3 Aproximate ASLboot using

ˆASLboot =#{ĥ∗1(b)≥ ĥ1}/B.

For B = 5000 we got ˆASLboot = 0.0002, which is smaller than 5%, so we reject
the null hypothesis that the stamps were printed on one type of paper at
the significance level 5%.



Creative choice of the test statistic and null hypothesis improves the
properties of the test, e.g. increase the chance of correctly rejecting the null
hypothesis, if is untrue (improves power). This is why we chose the
parameter of the smoothing parameter value on the edge between uni and
bimodal as the null hypothesis.



Bootstrap - some remarks

very general approach that makes few assumptions
bootstrapped distribution can be used to construct standard errors,
confidence intervals, bias correction



*Bootstrap may fail

Paradox: we wish to use it situations that are complex, but in these, it
may be also difficult to prove that it ”works”
It may fail if the parameter lies on the boundary of the parameter space
(Ex: X N(µ,1) where µ ∈ [0,∞] - Andrews, 2000)
If there is missing support information: Sample maximum: F0 has
support [0,θ0]. θ̂n =max{X1, ...,Xn}. T̂n = n(θ̂n −θ ), T ∗

n = n(θ̂ ∗
n − θ̂n).

P∗
n(T

∗
n = 0) = 1− (1−1/n)n → 1−e−1 whereas P(T̂n = 0)→ 0.



*What if bootstrap fails?

Subsampling
we draw smaller bootstrap samples without replacement
intuition: we sample directly from the true distribution (F0), not from
the estimated one (F̂n)
more general than bootstrap
less efficient if the regular bootstrap works
practical problem - how to choose subsample size?



*Bootstrap: Notation and theory
{Xi , i = 1, · · · ,n} data sample from unknown F0 ∈ I

Sometime we assume some parametric family F0(x ,θ0) = P(X ≤ x)
Test statistic T̂n = Tn(X1, ...,Xn)

Gn(τ,F0) = P(T̂n ≤ τ) denotes the true CDF of test statistic T̂n

T̂n je pivotal if Gn(τ,F) does not depend on F
T̂n is asymptotically pivotal if G∞(τ,F) does not depend on F
how can we estimate Gn(.,F0)???

e.g. G∞ - using asymptotic approximation (need largen)
replacing F0 with some estimator - bootstrap

let F̂n denotes estimator of unknown F0

ECDF (empirical cumulative distribution function) -
F̂n(x) = 1

n ∑
n
i=1 I(Xi ≤ x))→a.s. F0(x)

from a parametric family: F0(.) = F(.,θ0)



Procedure for approximation of Gn(τ,F0)

Step 1 We generate random sample of size n from F̂n: {X∗
i : i = 1, ...,n}

Step 2 Calculate T̂ ∗
n = Tn(X∗

1 , ...,X
∗
n )

Step 3 Repeat (1) a (2) many times so that we get the empirical distribution of
(T̂ ∗

n ≤ τ)



By increasing the number of simulated bootstrap samples B we improve the
estimator of Gn(τ, F̂n).

So by simulation we only get Ĝn(τ, F̂n), if we have enough patience and
computing time we can make this estimate arbitrarily good, so that
Ĝn(τ, F̂n)→ Gn(τ, F̂n) for B → ∞.



What does it mean that the bootstrap works?

It means that Gn(., F̂n)→ Gn(.,F0)

At least we would expect that the approximation would be correct if the
sample size grows to infinity.

This property is called consistency



Gn(t, F̂n) is consistent ∀ε > 0,∀F0 ∈ I

lim
n→∞

Pn

[
sup

τ

|Gn(t, F̂n)−G∞(τ,F0)|> ε

]
= 0

Gn(τ, F̂n)∼ G∞(τ, F̂n)∼ G∞(τ,F0)∼ Gn(τ,F0)



Beran and Ducharme (1991) presented sufficient conditions for consistency

F̂n → F0 (F̂n is a ”good” estimator of F0)
G∞(τ,F) is continuous in τ for all F ∈ I (continuity in τ )
for every τ and for every sequence Hn, such that Hn → F0:
Gn(τ,Hn)→ G∞(τ,F0) (”continuity” in F0)

Gn(τ, F̂n)∼ G∞(τ, F̂n)∼ G∞(τ,F0)∼ Gn(τ,F0)



Thank you for your attention!
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