[Return to Master Index]

 
-------- spatial Durbin model estimation functions -------- 
 
compare_models  : An example of using sdm_g() sem_g() Gibbs sampling
f2_sdm          : evaluates llike for the spatial durbin model 
f_sdm           : evaluates concentrated log-likelihood for the 
model_compare2  : An example of using sdm_g() Gibbs sampling
model_probs     : computes and prints posterior model probabilities using log-marginals
plt_sdm         : Plots output using SDM model results structures
prt_sdm         : Prints output using sdm results structures
sdm             : computes spatial durbin model estimates
sdm_d           : An example of using sdm() max likelihood
sdm_d2          : An example of using sdm() on a large data set
sdm_g           : Bayesian estimates of the heteroscedastic spatial durbin model
sdm_gd          : An example of using sdm_g() Gibbs sampling
sdm_gd2         : An example of using sdm_g() on a large data set
sdmp_g          : Bayesian estimates of the heteroscedastic spatial durbin probit model
sdmp_gd         : An example of using sdmp_g() Gibbs sampling
sdmp_gd2        : An example of using sdmp_g() on a large data set   
sdmt_g          : Bayesian estimates of the heteroscedastic spatial durbin tobit model
sdmt_gd         : An example of using sdmt_g() Gibbs sampling
sdmt_gd2        : An example of using sdmt_g() on a large data set