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Abstract

In the presence of an endogenous binary treatment and a valid binary instrument, causal

effects are (nonparametrically) point identified only for the subpopulation of compliers, given

that the treatment is monotone in the instrument. With the exception of the entire popu-

lation, causal inference for further subpopulations has been widely ignored in econometrics.

Therefore, we invoke treatment monotonicity and/or dominance assumptions on the mean po-

tential outcomes across subpopulations to derive sharp bounds on the average treatment ef-

fects on the treated, who often bear considerable policy relevance, as well as on other groups

(non-treated, entire population, compliers, always takers, and never takers). Furthermore, we

use our methods to assess the educational impact of a school voucher program in Colombia

on various subpopulations and also discuss testable implications of our assumptions.
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90, CH-1700 Fribourg; Lukáš Lafférs (lukas.laffers@gmail.com), Department of Mathematics, Matej
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1 Introduction

Endogeneity of the (binary) treatment variable and noncompliance to the treatment assign-

ment in randomized experiments are widespread phenomena in the evaluation of treatment

effects, see for instance Bloom (1984). Given a valid instrumental variable (IV) that is ran-

domly assigned and has no direct effect on the mean potential outcomes and (weakly) pos-

itive monotonicity of the treatment in the instrument, Imbens and Angrist (1994) (see also

Angrist, Imbens, and Rubin, 1996) show that the average treatment effect (ATE) is only iden-

tified in the subpopulation of compliers. The latter correspond to those whose the treatment

status is equal to (i.e. reacts on) the instrument if both the treatment and the instrument are

binary.

Whether the LATE is a relevant parameter heavily depends on the empirical context and

has been controversially discussed in the literature, see for instance Imbens (2009), Deaton

(2010), and Heckman and Urzúa (2010). Typically, researchers would like to identify the

ATEs on the treated or the entire population. Note that these parameters are themselves

weighted averages of the ATEs on several subpopulations, including the always takers (always

treated irrespective of the instrument) and the never takers (never treated irrespective of the

instrument). Maybe due to the fact that in a nonparametric framework, point identification is

generally not feasible for the never takers, always takers, the treated, and the entire population

(unless the complier share is 100 %), groups other than the compliers have (apart from the

entire population) been widely ignored in the econometric literature.1

The main contribution of this paper is to derive nonparametric bounds on ATEs of pop-

ulations that are potentially more policy relevant than the LATE on the compliers, which

may not be externally valid. In particular, we also consider the treated population, which is

of major interest in the program evaluation literature to assess the program effects on actual

participants. In contrast to the commonly invoked full independence between the instrument

and the potential outcomes/treatment states, we only assume mean independence between

the instrument and the potential outcomes (within subpopulations) as well as the subpopula-

tions. Moreover, we discuss the identifying power of (i) monotonicity of the treatment in the

1An exception is Frölich and Lechner (2010) who also point identify the ATEs on the always takers and never
takers. To this end, they invoke both IV and selection on observables (or conditional independence, see for instance
Imbens, 2004) assumptions. However, this identification strategy stands in contrast to virtually all other IV
applications, where an instrument is used exactly for the reason that no other source of identification (such as
selection on observables) is available.
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instrument and/or (ii) mean dominance of the potential outcomes of one subpopulation over

the others. Monotonicity and dominance, either w.r.t. the mean or to the entire distribution

(i.e., stochastic dominance), have also been considered in a different context, namely under

non-random sample selection and attrition, see for instance Zhang and Rubin (2003), Lechner

and Melly (2007), Blundell, Gosling, Ichimura and Meghir (2007), Zhang, Rubin and Mealli

(2008), and Lee (2009), and Huber and Mellace (2013a). We use the principal stratification

framework suggested by Frangakis and Rubin (2002) to derive sharp bounds for the ATEs

on the always takers, never takers, the treated, the non-treated, and the entire population.2

As a further contribution, we find testable implications of the IV mean independence within

subpopulations and mean dominance when monotonicity is invoked.

Partial identification of economic parameters in general goes back to Manski (1989, 1994)

and Robins (1989). Previous work on nonparametric bounds under treatment endogeneity,

which is the problem considered here, has almost exclusively focused on the ATE in the entire

population,3 but neglected further populations. E.g., Manski (1990) bounds the ATE by

solely relying on independence between the mean potential outcomes and the instrument.4

Considering binary outcomes, Balke and Pearl (1997) provide sharp bounds for the ATE

under full (rather than mean) independence between the instrument and the potential values

of the treatment (given the instrument) and the outcome (given the treatment) with and

without monotonicity (see also Dawid, 2003) of the treatment in the instrument. Shaikh and

Vytlacil (2011) bound the ATE on the entire population in the binary outcome case under

monotonicity, too, and assume the treatment effect to be either weakly positive or weakly

negative for all individuals (while the direction is a priori not restricted). See Bhattacharya,

Shaikh and Vytlacil (2008) for an application. Cheng and Small (2006) extend the results for

binary outcomes to three treatments (in contrast to the standard binary treatment framework

considered here) under particular forms of (one-sided) noncompliance. Richardson and Robins

(2010) is the only study apart from ours that also bounds the effects on further populations

(compliers, defiers, never takers, and always takers). They assume full independence and a

2In addition, Appendix A.8 provides the bounds for the treated subpopulations receiving and not receiving the
instrument.

3For the derivation of semiparametric bounds on the ATE on the entire population, see Chiburis (2010) and the
references therein.

4As it is the aim of this paper to provide bounds for further populations, we also need to assume that the
proportions of the subpopulations are independent of the instrument, otherwise the bounds on those populations
might differ for different values of the instrument.
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binary outcome, but do not consider monotonicity or any form of mean dominance.

In contrast to much of the epidemiologic literature, Heckman and Vytlacil (2001) and

Kitagawa (2009) allow for both discrete and continuous outcomes. Kitagawa (2009) partially

identifies the potential outcome distributions for the entire population under (various forms

of) full independence between the instrument and potential treatments/outcomes as well as

monotonicity and derives bounds on the ATE. Also Heckman and Vytlacil (2001) assume

full independence of the instrument, but invoke a nonparametric threshold crossing model

characterizing the treatment choice instead of monotonicity for deriving the bounds on

the ATE. However, by the results of Vytlacil (2002), both approaches are equivalent. One

interesting finding of Heckman and Vytlacil (2001) and Kitagawa (2009) is that the width of

their bounds is the same as those of Manski (1990), given that the monotonicity/threshold

crossing model assumptions are satisfied. The present work adds to the literature on

nonparametric bounds under endogeneity by considering more populations and an extended

set of identifying assumptions than any of the previous studies.

The identifying power of monotonicity and mean dominance is demonstrated in an empiri-

cal application to Colombia’s “Programa de Ampliación de Cobertura de la Educación Secun-

daria”, which provided pupils from low income families with vouchers for private secondary

schooling. Using experimental data previously analyzed by Angrist, Bettinger, Bloom, King

and Kremer (2002), we aim at assessing the program’s impact on the educational achievement

of various subpopulations. In particular, we find (in addition to the point identified complier

effect) a significantly positive ATE on the treated which lies within reasonably tight bounds.

This is an interesting result because it suggests that this and similar interventions have a pos-

itive effect on the participants, who are likely more policy relevant than the latent population

of compliers.

The remainder of this paper is organized as follows. Section 2 characterizes the endogene-

ity/noncompliance problem based on principal stratification. Section 3 discusses the identi-

fying assumptions and derives bounds on the ATEs for various populations. Section 4 briefly

presents the estimators. In Section 5, we consider an empirical application to experimental

education data. Section 6 concludes.
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2 Using principal stratification to characterize noncom-

pliance

Suppose that we want to estimate the effect of a binary treatment D ∈ {1, 0} (e.g., a train-

ing activity) on an outcome Y (e.g., labor market success such as employment or earnings)

evaluated at some point in time after the treatment. We use the experimental framework to

motivate the problems of endogeneity and noncompliance. Assume that individuals are ran-

domly assigned into treatment or non-treatment according to the binary assignment variable

Z ∈ {1, 0}, which will serve as instrument. Denote by Di(z) the potential treatment state for

Z = z and by Yi(d) the potential outcome (see for instance Rubin, 1974) of individual i under

treatment D = d. Throughout the discussion we will rule out interference between individuals

or general equilibrium effects of the treatment by invoking the “Stable Unit Treatment Value

assumption” (SUTVA), see for instance Rubin (1990). The SUTVA is formalized in Assump-

tion 1:

Assumption 1:

Yi(d)⊥dj and Di(z)⊥zj ∀j 6= i, d ∈ {0, 1} (SUTVA).

Even under Assumption 1, the individual effect Yi(1) − Yi(0) can never be evaluated as in-

dividual i is either treated or not treated, but cannot be observed in both states. I.e., the

observed outcome Yi = Di · Yi(1) + (1 −Di) · Yi(0). However, under particular assumptions

aggregate parameters such as the average treatment effect (ATE) ∆ = E[Y (1)]−E[Y (0)] can

be identified. E.g., assume that compliance in an experiment is perfect such that Di(1) = 1

and Di(0) = 0 for all individuals i. In this case and under successful randomization, E[Y |Z =

1] − E[Y |Z = 0] = E[Y |D = 1] − E[Y |D = 0] = E[Y (1)] − E[Y (0)] = ∆, where the first

equality follows from perfect compliance and the second from random assignment. I.e., the

ATE is identified because all individuals are compliers. However, if post-assignment compli-

cations occur such that Di(z) 6= z for some z and some individuals i, selection bias may flaw

the validity of the evaluation in spite of the randomization of the assignment. This is due

to the potential threat that individuals systematically select themselves into the treatment

according to their potential outcomes.

Using the principal stratification framework advocated by Frangakis and Rubin (2002), the

population can be divided into four principal strata, denoted by T , according to the choice of D
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as a reaction of Z. Angrist, Imbens and Rubin (1996) refer to the four groups as (i) compliers,

who react on the instrument in the intended way by taking the treatment when Z = 1 and

abstaining from it when Z = 0, (ii) always takers, who are always treated irrespective of the

assignment, (iii) never takers, who are never treated irrespective of the assignment, and (iv)

defiers, who are treated when not assigned, but not treated when assigned. Table 1 visualizes

this definition.

Table 1: Principal strata

Principal strata (T ) D(1) D(0) Notion

11 1 1 Always takers
10 1 0 Compliers
01 0 1 Defiers
00 0 0 Never takers

It is obvious that we cannot directly observe the principal stratum an individual belongs

to as either D(1) or D(0) is known. Therefore, without the imposition of further assumptions,

neither the principal strata proportions nor the distribution of Y within any stratum are

identified. To see this, note that the observed values of Z and D generate four observed

subgroups which are all mixtures of two principal strata. This implies that any individual i

with a particular combination of Zi, Di may belong to two principal strata, see Table 2.

Table 2: Observed subgroups and principal strata

Observed subgroups principal strata

{i : Zi = 1, Di = 1} subject i belongs either to 11 or to 10
{i : Zi = 1, Di = 0} subject i belongs either to 01 or to 00
{i : Zi = 0, Di = 1} subject i belongs either to 11 or to 01
{i : Zi = 0, Di = 0} subject i belongs either to 10 or to 00

As second identifying restriction maintained throughout the paper, we will assume Z to

be independent of (i) the mean potential outcomes within principal strata and (ii) of the

strata proportions, which has also been considered in Frölich (2007):

Assumption 2:

(i) E(Y (d)|T = t, Z = 1) = E(Y (d)|T = t, Z = 0) = E(Y (d)|T = t) for d ∈ {0, 1} and t

∈ {11, 10, 01, 00} (mean independence within principal strata),

(ii) Pr(T = t|Z = 1) = Pr(T = t|Z = 0) = Pr(T = t) for t ∈ {11, 10, 01, 00}

(unconfounded strata proportions).

Assumption 2 (i) postulates that mere assignment does not have any direct effect on the
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mean potential outcomes within any stratum other than through the treatment,5 i.e. mean

independence within principal strata.6 Taking assignment to a training as an example, it

rules out that the average labor market success given T changes as a reaction to merely

being assigned. I.e., what should matter is whether the training is actually received. By

Assumption 2 (ii), the proportion of any stratum conditional on the instrument is equal to

its unconditional proportion in the entire population. This holds for instance under random

assignment, where Z is fully independent of the joint distribution of (D(1), D(0)) and thus,

of T . Alternatively to the unconditional validity of Assumption 2, one may assume that it

only holds conditional on some observed pre-assignment variables X. This is closely related

to the framework of Frölich (2007) who shows point identification of the LATE under a

conditionally valid instrument (given X). In the further discussion, conditioning on X will

be kept implicit, such that all results either refer to the experimental framework or to an

analysis within cells of X.

Unfortunately, even under Assumptions 1 and 2, point identification is not obtained. Let

πt = Pr(T = t) denote a particular proportion and Pd|z ≡ Pr(D = d|Z = z) the observed

treatment probability conditional on assignment status. Under Assumption 2 (ii), which en-

sures that the strata proportions conditional on the instrument are equal to the unconditional

strata proportions, the relation between the observed Pd|z and the latent πt is as displayed

in Table 3. Likewise, any observed conditional mean outcome is a mixture of the mean out-

Table 3: Observed probabilities and principal strata proportions

Observed cond. treatment prob. princ. strata proportions

P1|1 = Pr(D = 1|Z = 1) π11 + π10

P0|1 = Pr(D = 0|Z = 1) π01 + π00

P1|0 = Pr(D = 1|Z = 0) π11 + π01

P0|0 = Pr(D = 0|Z = 0) π10 + π00

comes of two strata. E.g.,

5However, in contrast to the full independence considered in Imbens and Angrist (1994) and Angrist et al.
(1996), it may affect higher moments.

6For the case that mean independence is not satisfied, Flores and Flores-Lagunes (2013) derive bounds on the
LATE in the presence of an invalid instrument. In contrast, we will assume the instrument to be valid (in the sense
that it satisfies Assumption 2) throughout the discussion.
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E(Y |Z = 1, D = 1) =
π11

π11 + π10
· E(Y |Z = 1, D = 1, T = 11)

+
π10

π11 + π10
· E(Y |Z = 1, D = 1, T = 10),

=
π11

π11 + π10
· E(Y |D = 1, T = 11) +

π10

π11 + π10
· E(Y |D = 1, T = 10),

=
π11

π11 + π10
· E(Y (1)|T = 11) +

π10

π11 + π10
· E(Y (1)|T = 10),

where the second equality follows from Assumption 2 (i) and the third from the fact that

the treatment is unconfounded within each stratum consisting of individuals with identical

(non-)compliance behavior.

Thus, point identification of causal effects would require us to invoke further assumptions.

E.g., under monotonicity of D in Z and effect homogeneity, the ATE on the entire population

is identified. Albeit used in much of the IV literature, effect homogeneity is a very unattrac-

tive assumption given the rich empirical evidence on effect heterogeneity in the field of treat-

ment evaluation. Under monotonicity and effect heterogeneity, the LATE on the compliers is

identified, but this effect may be “too local” to be of policy interest. Fortunately, assumptions

as monotonicity and mean dominance also bear identifying power for further populations and

may yield informative bounds, as discussed in the next section.

3 Assumptions and interval identification

3.1 Mean independence within principal strata without further as-

sumptions

The partial identification of ATEs on various populations will be based on bounding the mean

potential outcomes E(Y (1)|T = t), E(Y (0)|T = t), with t ∈ {11, 10, 00, 01}. To this end, we

assume that the support Y of the outcome variable Y is bounded, i.e., Y = [yLB , yUB ] with

−∞ < yLB < yUB < ∞, and that Y is continuous over Y (see Appendix A.5 for discrete

outcomes). Boundedness of Y rules out infinite upper or lower bounds on the mean potential

outcomes and thus, on the ATE in any population. We will refer to the bounds on any ATE

as being informative if its identification region does not coincide with (i.e. is tighter than)

[yLB − yUB , yUB − yLB ].

Partial identification is obtained in three steps. In the first step, we derive sharp bounds

on the principal strata proportions using Assumption 2 (ii). As one can express three out
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of four proportions as a function of the remaining one, we only need to bound the latter.

Therefore, all bounds are computed as functions of the defier proportion, but choosing any

other principal stratum would entail the same results. The second step (which is mostly

discussed in the appendix) gives the bounds on the mean potential outcomes and the ATEs

conditional on the defier proportion. It makes use of the fact that each observed conditional

mean outcome is a mixture of the mean potential outcomes of two principal strata, with the

mixing probabilities corresponding to the relative principal strata proportions:

E(Y |Z = 1, D = 1) =
π11

π11 + π10
· E(Y (1)|T = 11) +

π10

π11 + π10
· E(Y (1)|T = 10), (1)

E(Y |Z = 0, D = 1) =
π11

π11 + π01
· E(Y (1)|T = 11) +

π01

π11 + π01
· E(Y (1)|T = 01), (2)

E(Y |Z = 0, D = 0) =
π10

π00 + π10
· E(Y (0)|T = 10) +

π00

π00 + π10
· E(Y (0)|T = 00), (3)

E(Y |Z = 1, D = 0) =
π01

π00 + π01
· E(Y (0)|T = 01) +

π00

π00 + π01
· E(Y (0)|T = 00). (4)

Given the defier proportion (and thus, the mixing probabilities), the results of Horowitz and

Manski (1995) (see Section 3.2 and Proposition 4 therein) provide us with sharp bounds

on the mean potential outcomes within each of equations (1) to (4), whereas Assumption 2

(i) allows further tightening these bounds across equations. Using an approach inspired by

Kitagawa (2009), we derive sharp bounds on the mean potential outcomes and the ATEs under

Assumption 2 (i) and conditional on the defier proportion. Finally, taking the supremum

(infimum) of the ATEs in the second step over admissible defier proportions that satisfy

Assumption 2 (ii) yields the sharp upper (lower) bounds on the ATEs (see Appendix A.1.2).7

As the bounds are continuous in π01 (as shown in Appendix A.1.4) and P∗ is an interval (as

shown in Lemma 1), the optima are attained by the extreme value theorem.

Concerning the bounds on the defier proportion, note that under Assumptions 1 and 2,

Table 3 provides us with the following equations:

π11 = P1|0 − π01 ⇒ π01 ≤ P1|0, (5)

π00 = P0|1 − π01 ⇒ π01 ≤ P0|1,

π10 = P1|1 − P1|0 + π01 ⇒ π01 ≥ P1|0 − P1|1,

7It is worth noting that without further restrictions, it is generally not possible that one particular value of π01

jointly optimizes the bounds on all ATEs considered.
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and thus, the defier proportion must lie in the following set

π01 ∈ P = [max(0, P1|0 − P1|1),min(P1|0, P0|1)]. (6)

Note that these bounds are valid outer bounds, but they need not be sharp. Sharp

bounds on the proportion of defiers have to be constructed based on the joint distribution of

(Y,D,Z), rather than (D,Z) alone. Under Assumptions 1 and 2, the condition π01 = 0 leads

to testable implications as studied in Huber and Mellace (2013b). However, in some cases

zero may not be in the identified set of the defier share. In Appendix A.1.3, we show that

admissibility of π01 is equivalent to checking four moment inequalites that generalize those

inequalities outlined in Huber and Mellace (2013b). Furthermore, Appendix A.1.1 presents a

linear programming procedure for constructing sharp bounds on π01 in the case of a discrete

Y .8 Under discreteness, linear programming can also be used for constructing sharp bounds

on various types of ATEs, see Freyberger and Horowitz (2013) and Lafférs (2013).

We denote by πmin
t and πmax

t the sharp lower and upper bounds of πt, t = 11, 10, 01, 00,

respectively, and by P∗ the sharp identified set for π01 under Assumptions 1 and 2. In

Appendix A.1.1, we show that P∗ is an interval. If P = P∗, then the remaining strata

proportions can be bounded by substituting (6) into (5). It is easy to see that either πmin
01 = 0

or πmin
10 = 0 and either πmin

11 = 0 or πmin
00 = 0. The outer bounds P are equivalent to those

derived in Richardson and Robins (2010) (equation (6) of Section 3.1, page 9). In contrast

to their paper we only assume mean independence within principal strata in Assumption 2,

rather than full independence.

In order to bound the ATEs on the four populations, we introduce some additional nota-

tion. We define Ȳz,d = E(Y |Z = z,D = d) to be the conditional mean of Y given Z = z and

D = d. Furthermore, FYz,d(y) = Pr(Y ≤ y|Z = z,D = d) denotes the conditional cdf of Y

given Z = z and D = d. Let qtz,d denote the share of individuals belonging to stratum T = t

in the observed subgroup with Z = z and D = d. If necessary, we will denote by q
t,πmax

01

z,d and

q
t,πmin

01

z,d , the value of qtz,d when π01 is equal to πmax
01 or πmin

01 , respectively. Let F−1
Yz,d

(qtz,d) =

inf{y : FYz,d(y) ≥ qtz,d}9 be the conditional quantile function of Y given Z = z and D =

d. We can then define the lower and upper bounds of E(Y |Z = z,D = d, T = t), which by

8We thank an anonymous referee for pointing out the difference between P and P∗ and for suggesting the linear
programming tool.

9We define F−1
Yz,d

(0) ≡ yLB and F−1
Yz,d

(1) ≡ yUB .
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Assumption 2 corresponds to E(Y (d)|T = t) (see Section 2), as Ȳz,d(min |qtz,d) = E(Y |Z =

z,D = d, Y ≤ F−1
Yz,d

(qtz,d)) and Ȳz,d(max |qtz,d) ≡ E(Y |Z = z,D = d, Y ≥ F−1
Yz,d

(1 − qtz,d)),

respectively. Finally, the ATEs on the various principal strata, the treated, the non-treated,

and the entire population are denoted by ∆t ≡ E(Y (1)−Y (0)|T = t) with t ∈ {11, 10, 01, 00},

∆D=d ≡ E(Y (1)− Y (0)|D = d) with d ∈ {1, 0}, and ∆ ≡ E(Y (1)− Y (0)), respectively. The

superscripts “UB” and “LB” denote the sharp upper and lower bounds on the respective pa-

rameters, where sharpness of the bounds on some parameter ∆̃ is defined as follows:

Definition 1 Given the knowledge of the distribution of the observed data, ∆̃LB and ∆̃UB

are sharp if [∆̃LB , ∆̃UB ] is the shortest interval such that, for every ∆̃ ∈ [∆̃LB , ∆̃UB ], we can

construct principal strata proportions Pr(T |Z) : T = 11, 10, 01, 00, Z = 1, 0 and potential out-

come distributions f(Y (1), Y (0)|T,Z) : T = 11, 10, 01, 00, Z = 1, 0 that satisfy the imposed

assumptions.

Considering the ATE on the compliers (∆10), if π01 = P1|1 − P1|0 /∈ P∗, then the upper

and lower bounds are, respectively,

∆UB
10 = sup

π01∈P∗

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01
(7)

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

P1|1 − P1|0 + π01

]
,

∆LB
10 = inf

π01∈P∗

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·min

(
Ȳ1,1(max |q11

1,1), Ȳ0,1(max |q11
0,1)
)

P1|1 − P1|0 + π01

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01

]
,

where q11
1,1 =

P1|0−π01

P1|1
(the share of always takers among those with Z = 1 and D = 1),

q11
0,1 =

P1|0−π01

P1|0
(the share of always takers among those with Z = 0 andD = 1), q00

1,0 =
P0|1−π01

P0|1

(the share of never takers among those with Z = 0 and D = 1), and q00
0,0 =

P0|1−π01

P0|0
(the

share of never takers among those with Z = 0 and D = 0). The proofs of the sharpness of

these bounds as well as of any other bounds proposed below are provided in the appendix.

If π01 = P1|1 − P1|0 ∈ P∗, then π10 = 0 and the bounds are uninformative. Therefore,

∆UB
10 = yUB − yLB and ∆LB

10 = yLB − yUB . In Appendix A.1.4, we show that ∆UB(π01) and

∆LB(π01) are continuous in π01.

Four points are worth noting concerning the derivation of these bounds. Firstly and as

already mentioned, they make use of Proposition 4 of Horowitz and Manski (1995), which in
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general only holds for continuous outcomes. Fortunately, it is easy to show that their results

can also be applied to discrete outcomes after a modification of the trimming function, see

Appendix A.5 for further details. Secondly, (7) has to be optimized w.r.t. admissible defier

proportions, given by P∗. Thirdly, mean independence within strata (Assumption 2 (i)) gives

rise to the maximum and minimum operators. Note that in the first (third) line in (7) one

computes the upper (lower) bound of the compliers’ mean potential outcome under treatment

by subtracting the lower (upper) bound of the mean potential outcome of the always takers.

As their lower (upper) bound under treatment is not affected by the value of Z due to mean

independence, the lower (upper) bound is the maximum (minimum) of the always takers’

lower (upper) bounds for Z = 1 and Z = 0. An analogous result holds for lines 2 and 4 w.r.t.

the bounds on the potential mean outcomes under non-treatment of the never takers. Finally,

these bounds are informative only if P1|0 < P1|1. This is equivalent to π10 > π01, saying that

the share of compliers is larger than the share of defiers. The reason is that if P1|0 ≥ P1|1, then

πmin
01 = P1|0 − P1|1 > 0, which implies that πmin

10 = 0 (so that the non-existence of compliers

cannot be ruled out) and ∆UB
10 = yUB − yLB , ∆LB

10 = yUB − yLB .

In a symmetric way one obtains the sharp upper and lower bounds on the ATE on the

defiers, ∆01. If π01 = 0 /∈ P∗:

∆UB
01 = sup

π01∈P∗

[
P1|0 · Ȳ0,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

π01
(8)

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·min

(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)

π01

]
,

∆LB
01 = inf

π01∈P∗

[
P1|0 · Ȳ0,1 − (P1|0 − π01) ·min

(
Ȳ1,1(max |q11

1,1), Ȳ0,1(max |q11
0,1)
)

π01

−
P0|1 · Ȳ1,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

π01

]
,

For the same reason mentioned above these bounds are informative only if P1|0 > P1|1, i.e.,

if there are more defiers than compliers. Therefore, without imposing further assumptions,

the bounds are informative either for the defiers or for the compliers, but never for both

populations. Furthermore, unless P1|1 − P1|0 = 0, either positive (if P1|1 − P1|0 > 0) or

negative (if P1|0 − P1|1 > 0) monotonicity of D in Z can be consistent with the data, but not

both at the same time.

Concerning the always takers, note that their outcomes are only observed under
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treatment. The shares of always takers in the observed groups with Z = 1, D = 1 and

Z = 0, D = 1 are, respectively, π11/(π11 + π10) = (P1|0 − π01)/P1|1 and π11/(π11 + π01) =

(P1|0 − π01)/P1|0. Therefore, we can bound the upper and lower values of the mean potential

outcome under treatment for this population by min
(
Ȳ1,1(max |q11,πmax

01
1,1 ), Ȳ0,1(max |q11,πmax

01
0,1 )

)
and max

(
Ȳ1,1(min |q11,πmax

01
1,1 ), Ȳ0,1(min |q11,πmax

01
0,1 )

)
, respectively. As already discussed, the

intuition for the optimization over different values of the instrument is that Z does not have

a direct effect on the mean potential outcomes. Therefore, the set of admissible potential

outcomes for D = 1 is the intersection of possible values under Z = 0 and Z = 1.

Since the outcomes of the always takers are never observed under non-treatment, we have

to rely on the upper and lower bounds in the support of Y , yUB and yLB . The sharp upper

and lower bounds for the ATE on the always takers ∆11, are:

∆UB
11 = min

(
Ȳ1,1(max |q11,πmax

01
1,1 ), Ȳ0,1(max |q11,πmax

01
0,1 )

)
− yLB , (9)

∆LB
11 = max

(
Ȳ1,1(min |q11,πmax

01
1,1 ), Ȳ0,1(min |q11,πmax

01
0,1 )

)
− yUB .

It is easy to see 10 that πmax
01 maximizes the upper bound and minimizes the lower bound

of ∆11 w.r.t. π01, so that q
11,πmax

01
z,1 = max

(
0,

P1|0−P0|1
P1|z

)
. Similarly as for the compliers and

defiers, these bounds are only informative if P1|0 > P0|1 ⇒ π11 > π00, i.e., if the share of

always takers is larger than the share of never takers. The sampling process constraints the

identification region of either the average treatment effect on the always takers or of the one

on the never takers. Once again if P1|0 < P0|1 then πmax
01 = P1|0, which implies that πmin

11 = 0.

Using a symmetric argument as for the always takers, the sharp upper and lower bounds

on the ATE of the never takers, ∆00, are, respectively:

∆UB
00 = yUB −max

(
Ȳ1,0(min |q00,πmax

01
1,0 ), Ȳ0,0(min |q00,πmax

01
0,0 )

)
, (10)

∆LB
00 = yLB −min

(
Ȳ1,0(max |q00,πmax

01
1,0 ), Ȳ0,0(max |q00,πmax

01
0,0 )

)
.

πmax
01 maximizes the upper bound and minimizes the lower bound of ∆00 w.r.t. π01, such

that q
00,πmax

01
z,0 = max

(
0,

P0|1−P1|0
P0|z

)
. The bounds are informative if P1|0 < P0|1, i.e., if there

are more never takers than always takers in the population. Similar as before if P1|0 > P0|1,

10Both Ȳ1,1(max |q11
1,1) and Ȳ0,1(max |q11

0,1) are increasing function of π01. Similarly, both Ȳ1,1(min |q11
1,1) and

Ȳ0,1(min |q11
0,1) are increasing functions of π01.
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πmax
01 = P0|1 which implies that πmin

00 = 0.11

The identification results presented so far refer to latent strata defined by Z and D,

populations that are not directly observed in the data. However, in the program evaluation

literature, most attention seems to be devoted to the (observed) population receiving the

treatment, see for instance Heckman, LaLonde and Smith (1999), which generally appears

more policy relevant than latent groups. As a major contribution of this paper, we therefore

also derive sharp bounds on the ATEs on the treated, as well as the non-treated and the entire

population. The discussion below shows that for doing so, it suffices to establish the sharp

bounds on E(Y (1)) and E(Y (0)), which for continuous outcomes are given by

E(Y (1))UB = (P0|1 − πmin
01 ) · yUB − (P1|0 − πmin

01 ) ·max
(
Ȳ1,1(min |q11,πmin

01
1,1 ), Ȳ0,1(min |q11,πmin

01
0,1 )

)
+ P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1, (11)

E(Y (1))LB = (P0|1 − πmin
01 ) · yLB − (P1|0 − πmin

01 ) ·min
(
Ȳ1,1(max |q11,πmin

01
1,1 ), Ȳ0,1(max |q11,πmin

01
0,1 )

)
+ P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1,

and

E(Y (0))UB = (P1|0 − πmin
01 ) · yUB − (P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
+ P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0, (12)

E(Y (0))LB = (P1|0 − πmin
01 ) · yLB − (P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
+ P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0,

respectively, see Appendix A.1.5. If Y is not continuous these bounds, and thus the one on

the treated, non-treated, and the entire population, have to be optimized w.r.t. admissible

defier proportions π01, given by P∗.

Considering the ATE on the treated, ∆D=1 = E(Y (1) − Y (0)|D = 1), note that because

E(Y (1)|D = 1) = E(Y |D = 1) is identified from the data, we only need to bound E(Y (0)|D =

1). Solving E(Y (0)) = Pr(D = 1) · E(Y (0)|D = 1) + Pr(D = 0) · E(Y (0)|D = 0) for

E(Y (0)|D = 1) gives E(Y (0)|D = 1) = E(Y (0))−Pr(D=0)·E(Y |D=0)
Pr(D=1) . Letting E(Y (0))UB and

E(Y (0))LB denote the sharp upper and lower bounds for E(Y (0)), respectively, it therefore

11This demonstrates that it is generally not possible to have a value of π01 that jointly optimizes the bounds on
the average treatment effects of all principal strata.
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follows that the sharp upper and lower bounds on the ATE on the treated ∆D=1 are given by

∆UB
D=1 = E(Y |D = 1)− E(Y (0))LB − Pr(D = 0) · E(Y |D = 0)

Pr(D = 1)
,

∆LB
D=1 = E(Y |D = 1)− E(Y (0))UB − Pr(D = 0) · E(Y |D = 0)

Pr(D = 1)
.

Since

Pr(D = 0) · E(Y |D = 0) = Pr(Z = 0) · P0|0 · Ȳ0,0 + Pr(Z = 1) · P0|1 · Ȳ1,0

and

P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0 = Pr(Z = 0) · P0|0 · Ȳ0,0 + Pr(Z = 1) · P0|1 · Ȳ1,0

+ Pr(Z = 1) · P0|0 · Ȳ0,0 + Pr(Z = 0) · P0|1 · Ȳ1,0,

= Pr(D = 0) · E(Y |D = 0) + Pr(Z = 1) · P0|0 · Ȳ0,0 + Pr(Z = 0) · P0|1 · Ȳ1,0,

the bounds on ∆D=1 correspond to

∆UB
D=1 = E(Y |D = 1)−

(P1|0 − πmin
01 ) · yLB + Pr(Z = 1) · P0|0 · Ȳ0,0 + Pr(Z = 0) · P0|1 · Ȳ1,0

Pr(D = 1)

+
(P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
Pr(D = 1)

, (13)

∆LB
D=1 = E(Y |D = 1)−

(P1|0 − πmin
01 ) · yUB + Pr(Z = 1) · P0|0 · Ȳ0,0 + Pr(Z = 0) · P0|1 · Ȳ1,0

Pr(D = 1)

+
(P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
Pr(D = 1)

.

The bounds of the ATE on the non-treated, ∆D=0 = E(Y (1) − Y (0)|D = 0), are

obtained in a symmetric way. As E(Y (0)|D = 0) = E(Y |D = 0) and E(Y (1)|D = 0) =

E(Y (1))−Pr(D=1)·E(Y |D=1)
Pr(D=0) , they are

∆UB
D=0 =

E(Y (1))UB − Pr(D = 1) · E(Y |D = 1)

Pr(D = 0)
− E(Y |D = 0),

∆LB
D=0 =

E(Y (1))LB − Pr(D = 1) · E(Y |D = 1)

Pr(D = 0)
− E(Y |D = 0).

Furthermore, since

14



Pr(D = 1) · E(Y |D = 1) = Pr(Z = 0) · P1|0 · Ȳ0,1 + Pr(Z = 1) · P1|1 · Ȳ1,1

and

P1|1 · Ȳ1,1 + P1|0 · Ȳ0,1 = Pr(Z = 0) · P1|0 · Ȳ0,1 + Pr(Z = 1) · P1|1 · Ȳ1,1

+ Pr(Z = 1) · P1|0 · Ȳ0,1 + Pr(Z = 0) · P1|1 · Ȳ1,1

= Pr(D = 1) · E(Y |D = 1) + Pr(Z = 1) · P1|0 · Ȳ0,1 + Pr(Z = 0) · P1|1 · Ȳ1,1,

the bounds on ∆D=0 are given by

∆UB
D=0 =

(P0|1 − πmin
01 ) · yUB + Pr(Z = 1) · P1|0 · Ȳ1,0 + Pr(Z = 0) · P1|1 · Ȳ1,1

Pr(D = 0)
(14)

−
(P1|0 − πmin

01 ) ·max
(
Ȳ1,1(min |q11,πmin

01
1,1 ), Ȳ0,1(min |q11,πmin

01
0,1 )

)
Pr(D = 0)

− E(Y |D = 0),

∆LB
D=0 =

(P0|1 − πmin
01 ) · yLB + Pr(Z = 1) · P1|0 · Ȳ1,0 + Pr(Z = 0) · P1|1 · Ȳ1,1

Pr(D = 0)

−
(P1|0 − πmin

01 ) ·min
(
Ȳ1,1(max |q11,πmin

01
1,1 ), Ȳ0,1(max |q11,πmin

01
0,1 )

)
Pr(D = 0)

− E(Y |D = 0).

Interestingly, the bounds on ∆D=1 and ∆D=0 are always informative despite the fact that

either the bounds for the compliers or the defiers and either the bounds for the always takers

or the never takers are not informative.

Finally, the bounds for the ATE on the entire population ∆ = E(Y (1)−Y (0)) are directly

obtained from the bounds on E(Y (1)) and E(Y (0)) in (11) and (12):

∆UB = E(Y (1)UB − Y (0)LB)

= P1|0 · Ȳ0,1 − (P1|0 − πmin
01 ) · yLB + P1|1 · Ȳ1,1 (15)

− (P1|0 − πmin
01 ) ·max

(
Ȳ1,1(min |q11,πmin

01
1,1 ), Ȳ0,1(min |q11,πmin

01
0,1 )

)
+ (P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
− P0|1 · Ȳ1,0 + (P0|1 − πmin

01 ) · yUB − P0|0 · Ȳ0,0 ,

and
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∆LB = E(Y (1)LB − Y (0)UB)

= P1|0 · Ȳ0,1 − (P1|0 − πmin
01 ) · yUB + P1|1 · Ȳ1,1 (16)

− (P1|0 − πmin
01 ) ·min

(
Ȳ1,1(max |q11,πmin

01
1,1 ), Ȳ0,1(max |q11,πmin

01
0,1 )

)
+ (P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
− P0|1 · Ȳ1,0 + (P0|1 − πmin

01 ) · yLB − P0|0 · Ȳ0,0 .

Again, these bounds are always informative no matter whether the bounds on the effect in

some of the principal strata are not informative. In Appendix A.1.8 we show that it is possible

to order the bounds on ∆D=1, ∆D=0, and ∆ with respect to their tightness. In particular, if

∆UB
D=1 < ∆UB

D=0 (or equivalently, ∆LB
D=1 > ∆LB

D=0), the bounds on ∆D=1 are tighter than those

on ∆, which are in turn tighter than those on ∆D=0. The order is reversed if ∆UB
D=1 > ∆UB

D=0

(or equivalently ∆LB
D=1 < ∆LB

D=0).

Furthermore, note that ∆LB , ∆UB might be narrower than the IV bounds derived

by Manski (1990). The reason is that we assume mean independence within strata

and unconfounded strata proportions (see Assumption 2), whereas Manski imposes

the weaker mean independence of the potential outcomes in the entire population:

E(Y (d)|Z = 1) = E(Y (d)|Z = 0) for d ∈ {0, 1}. In contrast, our bounds may be wider than

those of Kitagawa (2009), who invokes the stronger assumption of full independence of the

instrument and the potential treatment states and outcomes. A formal comparison between

the various bounds is given in Appendices A.1.6 and A.1.7.

Without imposing additional restrictions, the bounds derived in this section are likely to be

very wide for most populations. Therefore, they are often not helpful for obtaining meaningful

results in applications. For this reason we subsequently introduce further assumptions that

appear plausible in many empirical problems and might entail considerably tighter bounds.

3.2 Monotonicity

This subsection shows how assuming monotonicity of the treatment in the instrument in ad-

dition to Assumption 1 increases identifying power. (Weak) monotonicity of D in Z implies

that the treatment state under Z = 1 is at least as high as under Z = 0 for all individuals.

Assumption 3:
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Pr(D(1) ≥ D(0)) = 1 (monotonicity).

As the potential treatment state never decreases in the instrument, the existence of the defiers

(stratum 01) is ruled out. A symmetric result is obtained by assuming Pr(D(0) ≥ D(1)) = 1

which implies that stratum 10 does not exist. Note that assuming Pr(D(1) ≥ D(0)) = 1 (pos-

itive monotonicity) is only consistent with the data if P1|1 − P1|0 > 0, otherwise stratum 01

must necessarily exist. Similarly, Pr(D(0) ≥ D(1)) = 1 (negative monotonicity) requires that

P1|0 − P1|1 > 0, see Table 3. Even though these are necessary conditions for the respective

monotonicity assumption, they are not sufficient. Due to the symmetry of positive and neg-

ative monotonicity, we will only focus on Assumption 3 (positive monotonicity) in the subse-

quent discussion.

In their seminal paper on the identification of the local average treatment effect (LATE),

Imbens and Angrist (1994) (see also Angrist, Imbens, and Rubin, 1996) show that ∆10 is point

identified under Assumptions 1, 2, and 3. I.e., the bounds collapse to a single point given that

π01 is equal to zero:

∆10 =

(
P1|1

P1|1 − P1|0
· Ȳ1,1 −

P1|0

P1|1 − P1|0
· Ȳ0,1

)
−
(

P0|0

P1|1 − P1|0
· Ȳ0,0 −

P0|1

P1|1 − P1|0
· Ȳ1,0

)
=

(P1|1 · Ȳ1,1 + P0|1 · Ȳ1,0)− (P1|0 · Ȳ0,1 + P0|0 · Ȳ0,0)

P1|1 − P1|0

=
Pr(D = 1|Z = 1) · E(Y |Z = 1, D = 1) + Pr(D = 0|Z = 1) · E(Y |Z = 1, D = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

− Pr(D = 1|Z = 0) · E(Y |Z = 0, D = 1) + Pr(D = 0|Z = 0) · E(Y |Z = 0, D = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

=
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
. (17)

The last equality gives the well known result that the ATE on the compliers is just the ratio of

two differences in conditional expectations, namely the intention to treat effect divided by the

share of compliers. Under monotonicity, the observed subgroup with Z = 0 and D = 1 consists

of always takers only and therefore, Ȳ0,1 immediately gives the mean potential outcome under

treatment for the always takers. Thus, an optimization of the kind max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1

)
and min

(
Ȳ1,1(max |q11

1,1), Ȳ0,1

)
(with π01 = 0) as it was used for the bounds in section 3.1 is

not required here. Note, however, that this comparison gives a testable implication for the

identifying assumptions. If it is satisfied, Ȳ1,1(min |q11
1,1) ≤ Ȳ0,1 ≤ Ȳ1,1(max |q11

1,1), otherwise Z
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has a direct effect on the outcomes of the always takers. Similarly, Ȳ1,0 is the mean potential

outcome under non-treatment for the never takers. Therefore, another testable implication is

Ȳ0,0(min |q00
0,0) ≤ Ȳ1,0 ≤ Ȳ0,0(max |q00

0,0). We refer to Huber and Mellace (2013b) for a joint

test of these implications.

In the absence of defiers, the bounds for the always takers and never takers (∆11 and ∆00)

simplify to

∆UB
11 = Ȳ0,1 − yLB , (18)

∆LB
11 = Ȳ0,1 − yUB ,

and

∆UB
00 = yUB − Ȳ1,0, (19)

∆LB
00 = yLB − Ȳ1,0.

These bound are sharp because E(Y |D = 1, T = 11) and E(Y |D = 0, T = 00) are now point

identified by Ȳ0,1 and Ȳ1,0 (if mean independence within strata holds). However, monotonicity

does not impose any restrictions on the distributions of Y |D = 0, T = 11 and Y |D = 1, T = 00

so that the worst case bounds yLB , yUB have to be assumed.

As in the last section, the bounds on the ATEs on the treated (∆D=1), the non-treated

(∆D=0), and the entire population (∆) can be expressed as functions of the bounds on E(Y (1))

and E(Y (0)). In the appendix we show that under monotonicity,

E(Y (1))UB = P0|1 · yUB + P1|1 · Ȳ1,1,

E(Y (1))LB = P0|1 · yLB + P1|1 · Ȳ1,1,

E(Y (0))UB = P1|0 · yUB + P0|0 · Ȳ0,0,

E(Y (0))LB = P1|0 · yLB + P0|0 · Ȳ0,0,

so that the bounds on the various populations are given by

∆UB
D=1 = E(Y |D = 1)−

P1|0 · yLB + Pr(Z = 1) · (P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0)

Pr(D = 1)
, (20)

∆LB
D=1 = E(Y |D = 1)−

P1|0 · yUB + Pr(Z = 1) · (P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0)

Pr(D = 1)
,
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∆UB
D=0 =

P0|1 · yUB + Pr(Z = 0) · (P1|0 · Ȳ1,0 + P1|1 · Ȳ1,1)

Pr(D = 0)
− E(Y |D = 0), (21)

∆LB
D=0 =

P0|1 · yLB + Pr(Z = 0) · (P1|0 · Ȳ1,0 + P1|1 · Ȳ1,1)

Pr(D = 0)
− E(Y |D = 0),

and

∆UB = P0|1 · yUB + P1|1 · Ȳ1,1 − P1|0 · yLB − P0|0 · Ȳ0,0, (22)

∆LB = P0|1 · yLB + P1|1 · Ȳ1,1 − P1|0 · yUB − P0|0 · Ȳ0,0.

Balke and Pearl (1997), Heckman and Vytlacil (2001), and Kitagawa (2009) show that

under monotonicity, their bounds on the ATE in the entire population coincide with the

bounds of Manski (1990), who only invokes mean independence in the entire population.

I.e., Assumption 3 does, if it is satisfied, not bring any additional identifying power for ∆.

Interestingly, this is also the case for our bounds on the ATEs on the entire population, the

treated, and the non-treated. As all these bounds are optimized at πmin
01 = max(0, P1|0−P1|1)

(at least for continuous outcomes), it follows under a satisfaction of monotonicity that P1|1 −

P1|0 ≥ 0 and therefore, πmin
01 = 0. For this reason, imposing the monotonicity assumption,

which amounts to setting π01 = πmin
01 , does not further tighten the bounds if a defier proportion

of zero is already a priori consistent with the data.

3.3 Mean dominance

Mean dominance or the stronger stochastic dominance assumption have been used in the

sample selection framework by Zhang and Rubin (2003), Lechner and Melly (2007), Blundell

et al. (2007), Zhang et al. (2008), and Huber and Mellace (2013a). We will show that mean

dominance also bears identifying power in the IV framework.

Assumption 4:

E[Y (d)|T = 10] ≥ E[Y (d)|T = t] ∀ d ∈ {0, 1}, t ∈ {11, 00} (mean dominance).

Assumption 4 states that the mean potential outcomes of the compliers under treatment

and non-treatment are at least as high as those of the always and never takers. Note that
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the particular mean dominance assumption considered here is only one out of many possible

relations between the potential outcomes of various strata. Its plausibility has to be judged in

the light of the empirical application and theoretical considerations. In Section 5, we present

an example where the compliers are likely to have weakly higher mean potential educational

outcomes than both the always takers and the never takers due to plausibly being more able

and/or motivated on average. As discussed in the next subsection, mean dominance has

testable implications if it is jointly assumed with monotonicity. In the application presented

in Section 5 we will test Assumption 4 and show that it is not rejected at any conventional

significance level.

The bounds on the ATEs in the various principal strata as well as among the treated,

non-treated, and entire populations are provided in the appendix. Under Assumptions 1, 2,

and 4, Appendix A.3.2 outlines the moment inequalities that provide necessary and sufficient

conditions for the defiers’ proportion π01 being the identified set, denoted by P∗∗. The con-

struction of the latter based on linear linear programming is presented in Appendix A.3.1.

Note that in general P ⊆ P∗ ⊆ P∗∗. Finally, we derive the bounds on the various ATEs as

well as the mean potential outcomes in Appendix A.3.3.

3.4 Monotonicity and mean dominance

We subsequently derive the bounds under both monotonicity (Assumption 3) and mean dom-

inance (Assumption 4). Since ∆10 is point identified under Assumptions 1 to 3, Assumption

4 does not bring any further improvement w.r.t. the compliers. For all other populations, the

bounds become tighter when invoking both assumptions.

The upper and lower bounds of the ATE on the always takers are now

∆UB
11 = Ȳ0,1 − yLB , (23)

∆LB
11 = Ȳ0,1 −

(
P0|0

P1|1 − P1|0
· Ȳ0,0 −

P0|1

P1|1 − P1|0
· Ȳ1,0

)
.

As under mean dominance, the upper bound of the always takers’ mean potential outcome

under non-treatment cannot be higher than the compliers’ upper bound under non-treatment.

Furthermore, monotonicity implies that the latter is point identified by
P0|0

P1|1−P1|0
· Ȳ0,0 −

P0|1
P1|1−P1|0

· Ȳ1,0. Again, ∆LB
11 is sharp by Lemma 1 in Appendix A.3. Similarly, the bounds for
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the never takers tighten to

∆UB
00 =

(
P1|1

P1|1 − P1|0
· Ȳ1,1 −

P1|0

P1|1 − P1|0
· Ȳ0,1

)
− Ȳ1,0, (24)

∆LB
00 = yLB − Ȳ1,0.

By the monotonicity assumption,
P1|1

P1|1−P1|0
· Ȳ1,1 −

P1|0
P1|1−P1|0

· Ȳ0,1 is the compliers’ mean

potential outcome under treatment. Under mean dominance, this is an upper bound for the

never takers’ mean potential outcome under treatment.

Under both monotonicity and mean dominance, the upper bounds of E(Y (0)) and E(Y (1))

become

E(Y (1))UB = P0|1 ·
(
P1|1 · Ȳ1,1 − P1|0 · Ȳ0,1

P1|1 − P1|0

)
+ P1|1 · Ȳ1,1,

E(Y (0))UB = P1|0 ·
(
P0|0 · Ȳ0,0 − P0|1 · Ȳ1,0

P1|1 − P1|0

)
+ P0|0 · Ȳ0,0,

while the lower bounds are equivalent to those under monotonicity alone.

Therefore, the bounds on the ATEs on the treated, non-treated, and the entire population

are given by

∆UB
D=1 = E(Y |D = 1)−

P1|0 · yLB + Pr(Z = 1) · (P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0)

Pr(D = 1)
, (25)

∆LB
D=1 = E(Y |D = 1)−

P1|0 ·
(
P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0

)
+ Pr(Z = 1) · (P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0)

Pr(D = 1)
,

∆UB
D=0 =

P0|1 ·
(
P1|1·Ȳ1,1−P1|0·Ȳ0,1

P1|1−P1|0

)
+ Pr(Z = 0) · (P1|0 · Ȳ1,0 + P1|1 · Ȳ1,1)

Pr(D = 0)
− E(Y |D = 0),

∆LB
D=0 =

P0|1 · yLB + Pr(Z = 0) · (P1|0 · Ȳ1,0 + P1|1 · Ȳ1,1)

Pr(D = 0)
− E(Y |D = 0), (26)

and

∆UB = P0|1 ·
(
P1|1 · Ȳ1,1 − P1|0 · Ȳ0,1

P1|1 − P1|0

)
+ P1|1 · Ȳ1,1 − P1|0 · yLB − P0|0 · Ȳ0,0, (27)

∆LB = P0|1 · yLB + P1|1 · Ȳ1,1 − P1|0 ·
(
P0|0 · Ȳ0,0 − P0|1 · Ȳ1,0

P1|1 − P1|0

)
− P0|0 · Ȳ0,0.
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As a final remark it is worth noting that under Assumptions 1 to 3, Assumption 4 (mean

dominance) is testable. Recall that the always takers’ mean potential outcome is identified

by Ȳ0,1. Therefore, mean dominance of the compliers can be tested by comparing Ȳ0,1 and

Ȳ1,1, which also encounters compliers and, therefore, has to dominate. Equivalently, Ȳ1,0 is

the never takers’ mean potential outcome under non-treatment and must be dominated by

Ȳ0,0, which contains never takers and compliers. The intuition is that since the mean potential

outcome of the always takers (never takers) is not affected by Z under mean independence

within strata, the observed mean outcome consisting of both compliers and always takers

(never takers) dominates the observed mean outcome of the always takers (never takers) only.

The respective null hypotheses to be tested are Ȳ1,1 ≥ Ȳ0,1 and Ȳ0,0 ≥ Ȳ1,0. See Section 5 for

an application of mean dominance tests.

4 Estimation

Under Assumptions 1 to 3 or 1 to 4, estimators of the bounds can be constructed by using the

sample analogs of the bounds derived under the various assumptions, which is straightforward.

To this end, we define the following sample parameters:

P̂1|1 =

∑n
i=1Di · Zi∑n
i=1 Zi

, P̂0|1 = 1−
∑n
i=1Di · Zi∑n
i=1 Zi

, P̂1|0 =

∑n
i=1Di · (1− Zi)∑n
i=1(1− Zi)

,

P̂0|0 = 1−
∑n
i=1Di · (1− Zi)∑n
i=1(1− Zi)

, ˆ̄Y1,1 =

∑n
i=1 Yi ·Di · Zi∑n
i=1Di · Zi

, ˆ̄Y0,1 =

∑n
i=1 Yi ·Di · (1− Zi)∑n
i=1Di · (1− Zi)

,

ˆ̄Y1,0 =

∑n
i=1 Yi · (1−Di) · Zi∑n
i=1(1−Di) · Zi

, ˆ̄Y0,0 =

∑n
i=1 Yi · (1−Di) · (1− Zi)∑n
i=1(1−Di) · (1− Zi)

,

ˆ̄Yz,d(max |qtz,d) =

∑n
i=1 Yi · I{Di = d} · I{Zi = z} · I{Y ≥ ŷ1−qtz,d}∑n
i=1 I{Di = d} · I{Zi = z} · I{Y ≥ ŷ1−qtz,d}

,

ˆ̄Yz,d(min |qtz,d) =

∑n
i=1 Yi · I{Di = d} · I{Zi = z} · I{Y ≤ ŷqtz,d}∑n
i=1 I{Di = d} · I{Zi = z} · I{Y ≤ ŷqtz,d}

,

ŷqtz,d = min

{
y :

∑n
i=1Di · Zi · I{Yi ≤ y}∑n

i=1Di · Zi
≥ qtz,d

}
, ŷLB = min(Y ), ŷUB = max(Y )

where I{·} is the indicator function. Using these expressions instead of the population pa-

rameters in the various formulas for the bounds immediately yields feasible estimators.
√
n-

consistency and asymptotic normality of these estimators follow immediately from the results

of Lee (2009) and its discussion is, therefore, omitted.
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Under Assumptions 1 and 2 or 1, 2, and 4, however, estimation is non-standard due

to the presence of min/max and sup/inf operators. For example, the upper bound on the

compliers under Assumptions 1 and 2 is constructed in two steps. First, the sharp upper

bound given π01 is obtained as the minimum of the four possible combinations of the pairs(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

and
(
Ȳ0,0(max |q00

0,0), Ȳ1,0(max |q00
1,0)
)
, which are both functions

of Z. In the second step, the upper bound is derived by taking the sup of the bound over π01.

More general, denote by ∆LB
t (π01, z, z

′), ∆UB
t (π01, z, z

′)12 the upper and lower bounds of

any ∆t conditional on π01, Z = z in the first min (max) operator and Z = z′ in the second

one. To simplify the exposition, we define

v =



1 if z = 1, z′ = 1

2 if z = 1, z′ = 0

3 if z = 0, z′ = 1

4 if z = 0, z′ = 0

.

This allows rewriting ∆LB
t (π01, z, z

′), ∆UB
t (π01, z, z

′) as ∆LB
t (π01, v), ∆UB

t (π01, v). Then, the

identification region of ∆t is obtained by optimizing over admissible values of π01 ∈ P∗ and

v ∈ V = {1, 2, 3, 4}:

inf
π01∈P∗

{max
v∈V

[∆LB
t (π01, v)]} ≤ ∆t ≤ sup

π01∈P∗
{min
v∈V

[∆UB
t (π01, v)]}.

Hirano and Porter (2012) show that for parameters that are non-differentiable functionals

of the data (such as min/max and sup/inf operators), asymptotically unbiased estimators do

not exist. Therefore, the sample analog estimators of infπ01∈P∗{maxv∈V [∆LB
t (π01, v)]} and

supπ01∈P∗{minv∈V [∆UB
t (π01, v)]} may suffer from substantial finite sample bias and standard

asymptotics as well as the bootstrap are not consistent for the estimation of confidence inter-

vals. However, note that the biases induced by optimizing over the defier proportion and the

instrument go in opposite directions. Taking the supremum (infimum) of the upper (lower)

bounds over π01 yields overly conservative inference, while optimizing over Z produces bounds

and confidence intervals that are too tight.13 For this reason, we ignore the first source of

12This section as well as in Appendix A.7 focuses on bounds that contain two min/max operators. If the
bound contains only one min (max) operator, these expressions have to be replaced by ∆LB

t (π01, z), ∆UB
t (π01, z).

Estimation is then analogous except that v = z and can therefore only take two (rather than four) values.
13By optimizing over admissible defiers proportions P∗ (or P∗∗) we ignore the fact that P∗ is unknown and
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bias due to π01, but account for the second one due to Z by applying the method proposed in

Chernozhukov, Lee and Rosen (2013) and also used in Chen and Flores (2012). In this way

we obtain conservative (and half-median-unbiased) point estimates and confidence intervals

for the bounds. The method is described in Appendix A.7.

5 Application

We apply the methods outlined in the last sections to a school voucher experiment that was

conducted within Colombia’s “Programa de Ampliación de Cobertura de la Educación Secun-

daria” (PACES) in order to evaluate the program’s impact on the educational achievement of

various subpopulations. The PACES program targeted low income families in Colombia and

provided more than 125,000 pupils with vouchers covering somewhat more than half the cost

of private secondary schooling. Its goals were, among others, to increase net enrollment rates

in secondary education and to raise quality compared to a public only educational system,

see King, Rawlings, Gutierrez, Pardo and Torres (1997). We use a subsample of the data pre-

viously analyzed by Angrist et al. (2002) which consists of 1201 pupils in the capital Bogotá

whose average age was 12 years when they had applied for private school vouchers in 1995.

After randomly (not) being offered a voucher the applicants were re-interviewed in the second

half of 1998 to measure the outcome variables of interest such as the highest grade completed

and whether grades had to be repeated.

Table 4: Observed strata proportions

Conditional treatment probability estimate standard error

P1|1 = Pr(D = 1|Z = 1) 0.561 (0.020)
P0|1 = Pr(D = 0|Z = 1) 0.439 (0.020)
P1|0 = Pr(D = 1|Z = 0) 0.056 (0.010)
P0|0 = Pr(D = 0|Z = 0) 0.944 (0.010)

Let Z denote the random assignment indicator, Y a dummy for never repeating a grade

or the highest grade completed, respectively, and D whether private schooling was actually

received. As shown in Table 4, compliance with the school voucher assignment was not perfect.

Only 56.1 % of the 629 pupils offered a school voucher actually went to private schools, while

43.9 % did not. 94.4 % of the 583 pupils that were randomized out did not receive private

needs to be estimated in practice. Developing a statistical inference procedure that would account for the sampling
distribution of P∗ is, however, beyond the scope of the present paper, which focuses on identification.
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schooling, but 5.6 % attended private schools anyway. Table 5 reports the estimated bounds

on the strata proportions without monotonicity and the respective point estimates under

Assumption 3 (monotonicity). In our application, P, the outer bounds on the proportion

of defiers based on the distribution of (D,Z) (given by (6)) coincide with the sharp bounds

P∗ based on the distribution of (Y,D,Z) under mean independence within principal strata,

which are obtained by linear programming as discussed in Appendix A.1.1. They also coincide

with the sharp bounds P∗∗ under the additional assumption of mean dominance, which are

presented in A.3.1.

Table 5: Estimated (bounds on the) proportions of latent strata

Latent strata Bounds without monotonicity Proportions under monotonicity

Always takers [0.000, 0.056] 0.056
Compliers [0.505, 0.561] 0.505
Never takers [0.383, 0.439] 0.439
Defiers [0.000, 0.056] -

We estimate bounds on the ATEs of the compliers, the always takers, the never takers, the

treated, and the total population under mean independence within strata, mean dominance,

and/or monotonicity. We do not consider defiers, because P̂1|1 > P̂0|1, implies that the

bounds for the defiers are not informative when only invoking mean independence within

strata. Furthermore, defiers are ruled out under monotonicity (and under both monotonicity

and mean dominance). Note that also the bounds for the always takers are not informative

under mean independence within strata alone, because P̂1|0 < P̂0|1 such that the share of

always takers is smaller than the share of never takers. However, under monotonicity and/or

mean dominance, informative bounds can be obtained for this stratum.

Whenever optimization over the defier proportion is required,14 we use an equidistant grid

of 100 values between the minimum (0) and maximum (0.056) possible shares. Under mean

independence within strata and/or mean dominance (without monotonicity), we apply the

Chernozhukov et al. (2013) procedure (see the last section) for estimation and inference (using

a nominal significance level of 5%) using 5000 bootstraps and 200000 simulations.15 Under

14This concerns the compliers and –due to the discreteness of the outcomes– also the treated and the entire
population under Assumptions 1 and 2, and all populations considered under Assumptions 1,2, and 4.

15We are indebted to Xuan Chen and Carlos Flores for providing us with their Matlab code implementing the
Chernozhukov et al. (2013) procedure and for their helpful advice about its implementation. As we have to estimate
100 variance-covariance matrices for each bound when optimizing over π01 (one for each value of the grid), some of
them are close to being singular. To overcome this problem we use the Matlab function “mchol” by Brian Borchers
(downloaded on Feb 06th 2013 from http://infohost.nmt.edu/˜borchers/ldlt.html) for regularization.
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monotonicity (with and without mean dominance), which implies that standard asympotics

apply to the bounds, we compute the 95% confidence intervals for the ATEs (rather than the

bounds) based on the method described in Imbens and Manski (2004):

(
∆̂LB
t − 1.645 · σ̂LBt , ∆̂UB

t + 1.645 · σ̂UBt
)
,

where ∆̂LB
t , ∆̂UB

t are the estimated bounds in stratum t and σ̂LBt , σ̂UBt denote their respective

estimated standard errors,16 obtained from 5000 bootstrap replications. Concerning the worst

case bounds yUB and yLB , note that the binary outcome “never repeating a grade” is naturally

bounded between 0 and 1. For the highest grade completed, we take the maximum and

minimum values observed in the data, which are 11 and 5 years of schooling, respectively.

Table 6: ATE estimates on “never repeating a grade” and confidence intervals

Assumptions Compliers Always takers Never takers Treated Entire pop.
Assumptions 1 and 2 only [0.072, 0.208] [-1.000, 1.000] [-0.783, 0.379] [0.044, 0.263] [-0.261, 0.253]

(0.000, 0.281) Not informative (-0.837, 0.426) (-0.010, 0.333) (-0.302, 0.286)
Mean dominance [0.071, 0.207] [-0.923, 0.966] [-0.785, 0.350] [0.045, 0.266] [-0.261, 0.255]

(0.005, 0.250) (-1.000, 0.981) (-0.811, 0.401) (-0.009, 0.333) (-0.302, 0.287)
Monotonicity 0.118 [-0.156, 0.844] [-0.684, 0.316] [0.070, 0.245] [-0.249, 0.245]

(0.032, 0.203) (-0.263, 0.951) (-0.730, 0.363) (0.010, 0.313) (-0.293, 0.277)
Both 0.118 [-0.011, 0.844] [-0.684, 0.289] [0.095, 0.245] [-0.241, 0.234]

(0.032, 0.203) (-0.138, 0.951) (-0.730, 0.340) (0.025, 0.313) (-0.287, 0.270)

Note: Bounds in square brackets and confidence intervals in round brackets. Confidence intervals are based on 5000 bootstraps.

The number of simulations for the half-median-unbiased estimators is 200000.

Table 6 presents the results for the outcome “never repeating a grade” after the school

voucher assignment under the various assumptions. The bounds of the ATE estimates are

given in square brackets, the 95% confidence intervals are in round brackets. When only

invoking Assumptions 1 and 2, the bounds are not informative for the always takers and quite

wide for the never takers and the entire population. For the treated, the estimated interval is

positive, but the lower bound is not significantly different from zero. For the compliers, the set

is significantly positive (on a nominal level of 5%) and suggests that private schooling decreases

the probability to repeat a class by 7 to 21 percentage points. This result suggests that mean

independence within strata might have considerable identifying power in applications even

when other restrictions such as monotonicity do not appear plausible.

Mean dominance slightly narrows the bounds for the always takers, which are now infor-

mative, but all in all, the gains in identification are if anything modest. In contrast, mono-

16The confidence intervals apply to cases where the distance between the upper and lower bound of the effect is
bounded away from zero, see Stoye (2009). Under point identification (as for the compliers under monotonicity),

the conventional two-sided confidence intervals are to be used:
(

∆̂t − 1.96 · σ̂t, ∆̂t + 1.96 · σ̂t
)

, where ∆̂t, σ̂t denote

the point estimate of the effect and the estimated standard error.
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tonicity of D in Z (such that defiers are ruled out) entails point identification of the ATE on

the compliers. The positive and significant estimate implies that grade repetition is reduced

by roughly 12 percentage points when attending a private school. Also the identification re-

gion of the ATE on the treated, which (from a policy perspective) often represent the most

interesting population, is now significantly positive. When invoking both monotonicity and

mean dominance, the lower bound for the treated is tightened further. The identification re-

gions for the always takers, never takers, and the entire population shrink somewhat, too, but

still include the possibility of a zero effect.

Table 7 shows the estimates for the outcome “highest grade completed”. Under Assump-

tions 1 and 2 alone, the estimated set for the ATE on the compliers positive and almost sig-

nificant. It suggests that attending a private school increases the highest grade completed on

average by 0.15 to 0.56 years for this population. Mean dominance does little to shrink the

complier bounds. Under monotonicity, the point estimate suggests that schooling is on aver-

age raised by a third of a year. When invoking both assumptions, also the ATE on the treated

(between 0.29 and 0.76 years) is significantly positive. Even the identification region for the

always takers is larger than zero, but the effect is not significant at the 5 % level. All in all,

our results support the conclusion of Angrist et al. (2002) that pupils going to private schools

benefited from higher educational attainment. We find economically important positive ef-

fects on the likelihood not to repeat grades and on the highest grade completed among the

compliers, but also among the treated population. The latter result is particularly relevant,

because it suggests that the program increases the outcomes of those actually participating,

a group that is most likely of more policy interest than the latent population of compliers.

Table 7: ATE estimates on “highest grade completed” and confidence intervals

Assumptions Compliers Always takers Never takers Treated Entire pop.
Assumptions 1 and 2 only [0.149, 0.562] [-6.000, 6.000] [-2.512, 4.019] [-0.353, 0.760] [-1.026, 1.984]

(-0.008, 0.721) Not informative (-2.627, 4.248) (-0.562, 0.952) (-1.155, 2.143)
Mean dominance [0.155, 0.549] [-2.007, 3.012] [-2.513, 1.019] [0.037, 0.810] [-0.866, 0.734]

(-0.001, 0.640) (-2.624, 3.037) (-2.576, 1.121) (-0.084, 0.988) (-0.984, 0.806)
Monotonicity 0.326 [-3.188, 2.813] [-2.251, 3.749] [-0.287, 0.760] [-1.002, 1.968]

(0.126, 0.526) (-3.457, 2.967) (-2.362, 3.987) (-0.506, 0.940) (-1.133, 2.127)
Both 0.326 [0.115, 2.813] [-2.251, 0.773] [0.289, 0.760] [-0.818, 0.661]

(0.126, 0.526) (-0.112, 2.967) (-2.362, 0.889) (0.122, 0.940) (-0.943, 0.746)

Note: Bounds in square brackets and confidence intervals in round brackets. Confidence intervals are based on 5000 bootstraps.

The number of simulations for the half-median-unbiased estimators is 200000.

As mentioned in Section 3.4, mean dominance of the compliers’ potential outcomes has

testable implications if monotonicity holds. We therefore bootstrap the sample analogs of

E[Y (1)|T = 10] − E[Y (1)|T = 11] and E[Y (0)|T = 10] − E[Y (0)|T = 00] (with E[Y (1)|T =
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10] =
P1|1·Ȳ1,1−P1|0·Ȳ0,1

P1|1−P1|0
, E[Y (0)|T = 10] =

P0|0·Ȳ0,0−P0|1·Ȳ1,0

P0|0−P0|1
, E[Y (1)|T = 11] = Ȳ0,1, and

E[Y (0)|T = 00] = Ȳ1,0) to test whether the respective mean potential outcome of the compliers

dominates that of the always takers under treatment and that of the never takers under non-

treatment.17 Table 8 reports the mean potential outcomes of the various populations and the

p-values of the tests. The results strongly support the mean dominance of the compliers over

the always takers under treatment and the mean dominance of the compliers over the never

takers under non-treatment.

However, strictly speaking we also have to test whether the compliers dominate the always

takers under non-treatment and the never takers under treatment, respectively. Even though

this is infeasible (because always takers are never observed under non-treatment just as never

takers under treatment), the mean potential outcomes provide indirect evidence that these

assumptions are most likely satisfied. First of all, the hypothesis that the mean potential

outcome of the compliers under non-treatment dominates the mean potential outcome of the

always takers under treatment cannot be rejected for either outcome. I.e., if the ATE on the

always takers is either positive or at least not negative by a sufficiently large amount, the mean

potential outcome of the always takers under non-treatment cannot be larger than that of the

compliers. Furthermore, the never takers can only have a higher mean potential outcome

under treatment than the compliers if the ATE on the former is substantially larger than

that on the latter (as the mean potential outcome of the never takers under non-treatment

is considerably lower than that of the compliers for both outcome variables). In this case,

however, it seems irrational of the never takers not to take the treatment such that this

scenario appears unlikely.

Given the results of the tests, the question arises under which circumstances it seems

plausible that the compliers’ mean educational achievement dominates those of the always

and never takers. Suppose that the private schooling decision is a function of (monetary

and non-monetary) costs and utility coming from educational achievement. Economic theory

suggests that rational households should send their children to private schools only if the

17Of course, this approach tests mean dominance conditional on the satisfaction of Assumptions 2 and 3 and is
otherwise a joint test of all three assumptions. Huber and Mellace (2013b) suggest tests (i) for Assumptions 2 and 3
alone and (ii) (as also Kitagawa, 2013) for full independence of the instrument and potential treatments/outcomes
and Assumption 3. For the outcome “never repeating a grade”, using the method of Chen and Szroeter (2014) (with
a normal smoothing function and

√
n/2 log(log(n)) as tuning parameter for the selection of binding moments) to

test (i) and (ii) (with two equidistant probability measures) yields p-values of 1.000 and 0.999, respectively. For
“highest grade completed”, the respective p-values are 0.993 and 0.851. Therefore, our data provide no evidence
for a violation of (i) or (ii).
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Table 8: Mean potential outcomes and mean dominance tests

never repeating a grade highest grade completed

E[Y (1)|T = 10] 0.973 8.024
E[Y (0)|T = 10] 0.855 7.698
E[Y (1)|T = 11] 0.844 7.813
E[Y (0)|T = 00] 0.684 7.251

p-value for H0 : E[Y (1)|T = 10] ≥ E[Y (1)|T = 11] 0.964 0.975
p-value for H0 : E[Y (0)|T = 10] ≥ E[Y (0)|T = 00] 0.997 0.998
p-value for H0 : E[Y (0)|T = 10] ≥ E[Y (1)|T = 11] 0.559 0.211

Note: p-values of mean dominance tests are based on 1999 bootstraps.

expected utility is at least as high as the costs. Always taker households may get a relatively

higher utility from education, e.g., because the parents are themselves better educated and,

therefore, appreciate education more than the compliers. Furthermore, they may represent

the more wealthy households (as they send their children to private schools even without

vouchers) such that their relative costs for schooling are lower. This might again be correlated

with parental education. Both increased utility and lower relative costs will give relatively

more pupils with lower potential outcomes –related to lower ability and/or motivation– the

chance to receive private schooling. This line of argumentation is supported by the data,

which also contain information on father’s and mother’s education and the possession of

phone, which may be regarded as a proxy for wealth. The means of these variables (which

were measured before the assignment) are higher among always takers than among compliers

and the differences are significant at the 10 % level.18

In contrast, mean parental education and possessing a phone does not significantly differ

between the never takers and compliers. Given that they face similar utilities (for a particular

level of education) and relative costs as the compliers, it is plausible that the never taker

households did not respond to the vouchers because their kids were probably less motivated

and/or able and for this reason their expected returns to private schooling were too small.

This suggests that the never takers’ ATE (and the mean potential outcomes) is lower than

those of the compliers, as never taker households were not even willing to pay less than half

of the cost of private schooling (recall that the vouchers did not cover the entire expenses).

18The test statistics are available from the authors upon request.
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6 Conclusion

This paper sheds light on the question of what can be learnt about the average treatment

effects (ATE) on various populations under endogeneity/noncompliance when a valid instru-

mental variable (IV) is at hand that satisfies mean independence within strata and ignorable

assignment. Since the work by Imbens and Angrist (1994) it is well known that a local ATE

(LATE) on the compliers (who take the treatment if instrumented, but do not otherwise) is

point identified under monotonicity of the treatment in the instrument. Even though point

identification is not feasible for other groups, we show that informative bounds can be ob-

tained for the always takers (treated irrespective of the instrument), the never takers (not

treated irrespective of the instrument), the treated, the non-treated, and the entire popula-

tion. We also investigate the identifying power of mean dominance of the potential outcomes

of the compliers over those of the always takers and never takers.

The main contribution is the derivation of sharp bounds on the ATE of various popula-

tions under monotonicity, mean dominance, and under both assumptions. We also present

an application to Colombia’s “Programa de Ampliación de Cobertura de la Educación Secun-

daria”, which provided pupils from low income families with vouchers for private secondary

schooling, using experimental data previously analyzed by Angrist et al. (2002). We find (on

top of the complier effect) a significantly positive ATE on the educational achievement of the

treated population, a group of major policy interest. As valuable “by-products” of our iden-

tification results we also obtain testable implications of the validity of the instrument and of

mean dominance, respectively.
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A Appendix

A.1 Mean independence within principal strata without further as-

sumptions

A.1.1 Identified set for the proportion of defiers based on linear

programming

To shorten notation, let f(y(1), y(0)|t, z) denote the probability density of the counterfactual out-

comes (Y (1), Y (0)) evaluated at (y(1), y(0)) given T = t and Z = z and let fY (y) denote the proba-

bility density function of the observed outcome Y evaluated at y. Assumption 2 together with com-

patibility with the probability distribution of observed variables (Y,D,Z) translates into the follow-

ing restrictions.

Assumption 2 (i)

E(Y (d)|T = t, Z = 1) = E(Y (d)|T = t, Z = 0), ∀t ∈ {11, 10, 01, 00}, ∀d ∈ {1, 0} (A.1)

We rewrite (A.1) in terms of f(y(1), y(0)|t, z):

∫
y(1)f(y(1), y(0)|t, 1)dy(1)dy(0) =

∫
y(1)f(y(1), y(0)|t, 0)dy(1)dy(0), (A.2)∫

y(0)f(y(1), y(0)|t, 1)dy(1)dy(0) =

∫
y(0)f(y(1), y(0)|t, 0)dy(1)dy(0).

Assumption 2 (ii) together with compatibility with the distribution of (Y,D,Z)

For D = 1 and Z = 1, we have

fY (y|Z = 1, D = 1) Pr(D = 1|Z = 1) = fY (1)(y|11, 1) Pr(T = 11|Z = 1) + fY (1)(y|10, 1) Pr(T = 10|Z = 1)

= fY (1)(y|11, 1) Pr(T = 11) + fY (1)(y|10, 1) Pr(T = 10),

where fY (y|Z = z,D = d) denotes the conditional density function of Y given D = d and Z = z,

fY (d)(y|t, z) stands for the conditional density function of a potential outcome Y (d) given T = t and

Z = z. The second equation follows from the Assumption 2 (ii). Similarly,

fY (y|Z = 0, D = 1) Pr(D = 1|Z = 0) = fY (1)(y|11, 0) Pr(T = 11) + fY (1)(y|01, 0) Pr(T = 01),

fY (y|Z = 1, D = 0) Pr(D = 0|Z = 1) = fY (0)(y|01, 1) Pr(T = 01) + fY (0)(y|00, 1) Pr(T = 00),

fY (y|Z = 0, D = 0) Pr(D = 0|Z = 0) = fY (0)(y|10, 0) Pr(T = 10) + fY (0)(y|00, 0) Pr(T = 00)
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This implies that the following equations must hold for all y ∈ Y:

P1|1 · fY (y|Z = 1, D = 1) = (P1|0 − π01)

∫
f(y, y(0)|11, 1) dy(0) + (P1|1 − P1|0 + π01)

∫
f(y, y(0)|10, 1) dy(0),

P1|0 · fY (y|Z = 0, D = 1) = (P1|0 − π01)

∫
f(y, y(0)|11, 0) dy(0) + π01

∫
f(y, y(0)|01, 0) dy(0), (A.3)

P0|1 · fY (y|Z = 1, D = 0) = π01

∫
f(y(1), y|01, 1) dy(1) + (P0|1 − π01)

∫
f(y(1), y|00, 1) dy(1),

P0|0 · fY (y|Z = 0, D = 0) = (P1|1 − P1|0 + π01)

∫
f(y(1), y|10, 0) dy(1) + (P0|1 − π01)

∫
f(y(1), y|00, 0) dy(1).

If there exists a proper density function f(y(1), y(0)|t, z) for all t ∈ {11, 10, 01, 00}, z ∈ {1, 0}

which satisfies (A.2) and (A.3), then π01 ∈ P∗, where P∗ denotes the sharp identified set for the

share of defiers.

With discrete Y , the problem is equivalent to the non-emptiness of the linearly constrained feasible

set. Consider a discrete y with support Y∗ = {y1, y2, . . . yk} and let hzt (yi, yj) = Pr(Y (1) = yi, Y (0) =

yj |T = t, Z = z). We denote the set of conditional distributions by {hzt }. Then equations (A.2) can

be rewritten as

k∑
i=1

k∑
j=1

yih
1
t (yi, yj) =

k∑
i=1

k∑
j=1

yih
0
t (yi, yj), (A.4)

k∑
i=1

k∑
j=1

yjh
1
t (yi, yj) =

k∑
i=1

k∑
j=1

yjh
0
t (yi, yj).

Similarly, equations (A.3) become

Pr(Y = yi, D = 1|Z = 1) = (P1|0 − π01)

k∑
j=1

h1
11(yi, yj) + (P1|1 − P1|0 + π01)

k∑
j=1

h1
10(yi, yj), ∀i = 1, . . . k,

Pr(Y = yi, D = 1|Z = 0) = (P1|0 − π01)

k∑
j=1

h0
10(yi, yj) + π01

k∑
j=1

h0
01(yi, yj), ∀i = 1, . . . k, (A.5)

Pr(Y = yj , D = 0|Z = 1) = π01

k∑
i=1

h1
01(yi, yj) + (P0|1 − π01)

k∑
i=1

h1
00(yi, yj), ∀j = 1, . . . k,

Pr(Y = yj , D = 0|Z = 0) = (P1|1 − P1|0 + π01)

k∑
i=1

h0
10(yi, yj) + (P0|1 − π01)

k∑
i=1

h0
00(yi, yj), ∀j = 1, . . . k.

At the same time, hzt must be a proper probability distribution for all t ∈ {11, 10, 01, 00} and

z ∈ {1, 0}:

k∑
i=1

k∑
j=1

hzt (yi, yj) = 1, ∀t ∈ {11, 10, 01, 00}, ∀z ∈ {1, 0}, (A.6)

hzt (yi, yj) ≥ 0, ∀i = 1, . . . k, ∀j = 1, . . . k, ∀t ∈ {11, 10, 01, 00}, ∀z ∈ {1, 0}.

We conclude that the identified set for the share of defiers is a collection of points π01 ∈ P
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for which a feasible solution exists to a set of constraints given by (A.4)-(A.6) (formally

P∗ = {π01 ∈ P : ∃ {hzt } that solves (A.4)-(A.6)}), which can be checked using a linear programming

tool.

Lemma 1 The identified set P∗ for π01 is an interval.

Proof of Lemma 1. Consider the smallest and the largest admissible values πmin
01 and πmax

01 and the

corresponding sets of conditional distributions {hz,min
t } and {hz,max

t } that satisfy (A.4)− (A.6). For

a fixed 0 < λ < 1, let πλ01 = λπmin
01 + (1− λ)πmax

01 .

Consider hz,λt (yi, yj) = θthz,min
t (yi, yj)+(1−θt)hz,max

t (yi, yj) for all t ∈ {11, 10, 01, 00}, z ∈ {1, 0},

and i, j ∈ {1, · · · , k}, where

θ11 =
λ(P1|0 − πmin

01 )

λ(P1|0 − πmin
01 ) + (1− λ)(P1|0 − πmax

01 )
,

θ10 =
λ(P1|1 − P1|0 + πmin

01 )

λ(P1|1 − P1|0 + πmin
01 ) + (1− λ)(P1|1 − P1|0 + πmax

01 )
,

θ01 =
λπmin

01

λπmin
01 + (1− λ)πmax

01

,

θ00 =
λ(P0|1 − πmin

01 )

λ(P0|1 − πmin
01 ) + (1− λ)(P0|1 − πmax

01 )
.

Then, {hz,λt } solves (A.4) and (A.6) because these constraints do not depend on π01. It is left to prove

that the set of distributions {hz,λt } satisfies (A.5) for πλ01. We demonstrate it for the first equality

in (A.5) and the validity of the remaining equalities follows similarly. We would like to show that

∀i ∈ {1, . . . , k} :

Pr(Y = yi, D = 1|Z = 1) = (P1|0 − πλ01)

k∑
j=1

h1,λ
11 (yi, yj) + (P1|1 − P1|0 + πλ01)

k∑
j=1

h1,λ
10 (yi, yj).
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Consider the first term and the second term on the right hand side of this equation separately:

(P1|0 − πλ01)

k∑
j=1

h1,λ
11 (yi, yj) =

[
P1|0 − (λπmin

01 + (1− λ)πmax
01 )

] k∑
j=1

[
θ11h1,min

11 (yi, yj) + (1− θ11)h1,max
11 (yi, yj)

]
=

= λ(P1|0 − πmin
01 )

k∑
j=1

h1,min
11 (yi, yj) + (1− λ)(P1|0 − πmax

01 )

k∑
j=1

h1,max
11 (yi, yj),

(P1|1 − P1|0 + πλ01)

k∑
j=1

h1,λ
10 (yi, yj) =

=
[
P1|1 − P1|0 + (λπmin

01 + (1− λ)πmax
01 )

] k∑
j=1

[
θ10h1,min

10 (yi, yj) + (1− θ10)h1,max
10 (yi, yj)

]
=

= λ(P1|1 − P1|0 + πmin
01 )

k∑
j=1

h1,min
10 (yi, yj) + (1− λ)(P1|1 − P1|0 + πmax

01 )

k∑
j=1

h1,max
10 (yi, yj).

Summing and rearranging the two terms results in

(P1|0 − πλ01)

k∑
j=1

h1,λ
11 (yi, yj) + (P1|1 − P1|0 + πλ01)

k∑
j=1

h1,λ
10 (yi, yj) =

λ

[
(P1|0 − πmin

01 )

k∑
j=1

h1,min
11 (yi, yj) + (P1|1 − P1|0 + πmin

01 )

k∑
j=1

h1,min
10 (yi, yj)

]
+

(1− λ)

[
(P1|0 − πmax

01 )

k∑
j=1

h1,max
11 (yi, yj) + (P1|1 − P1|0 + πmax

01 )

k∑
j=1

h1,max
10 (yi, yj)

]
=

λ · Pr(Y = yi, D = 1|Z = 1) + (1− λ) · Pr(Y = yi, D = 1|Z = 1) = Pr(Y = yi, D = 1|Z = 1),

where the last equality follows from the fact that {hz,min
t } and {hz,max

t } satisfy (A.5) for πmin
01 and

πmax
01 , respectively. We have therefore shown that {hz,λt } satisfies (A.4)-(A.6) for πλ01 so that P∗ =[
πmin

01 , πmax
01

]
. We note that the proof easily extends to the case with a continuous Y , where the sums

would be replaced by integrals.

In a similar manner, one can obtain sharp bounds on various ATEs or potential outcomes using

the linear programming tool whenever Y is discrete. Instead of searching for a feasible solution to

(A.4)-(A.6), we would search for a solution that minimizes (or maximizes) a linear functional of a set of

conditional distributions {hzt } corresponding to the object of our interest (e.g. ∆t,∆D=1,∆, E(Y (d))).

A.1.2 Proof of the validity and the sharpness of the bounds on the ATEs

within principal strata

We begin with a lemma that we will make use of in the proof.
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Lemma 2 Let W be a random variable that is distributed as a two components mixture:

f(w) = p · f1(w) + (1− p) · f2(w) p ∈ [0, 1],

so that W = pW1 + (1 − p)W2, where f1, f2 and f are probability density functions of W1, W2 and

W respectively. Denote by E(W1) and E(W2) the expected values of the first and second component,

respectively, and assume that E(W2) ≥ E(W1). Then, regardless of the identifying restrictions placed

on the joint distribution of (W,W1,W2),

1. E(W ) is the sharp upper bound for E(W1),

2. E(W ) is the sharp lower bound for E(W2).

Proof of Lemma 2. First of all, we need to show that E(W1) ≤ E(W ) ≤ E(W2). To see this, note

that

E(W ) = p · E(W1) + (1− p) · E(W2). (A.7)

This implies

E(W2) = E(W ) + (p · E(W2)− p · E(W1)).

Since E(W2) ≥ E(W1) by assumption, p ·E(W2)− p ·E(W1) cannot be negative, which implies that

E(W ) ≤ E(W2). In a symmetric manner one can show that E(W1) ≤ E(W ). Finally, we need

to show that E(W ) is the respective sharp upper bound for E(W2) and the sharp lower bound for

E(W1). We only demonstrate the latter part as the proof for the former is symmetric. Let ψ2 be a

generic member of the identification region of E(W1), denoted by Ψ2 : ψ2 ≥ E(W ) ≥ E(W1). Clearly,

E(W ) ∈ Ψ2. From (A.7) we have

E(W1) ≤ E(W )− (1− p) · ψ2

p
.

Suppose there exists an element of Ψ2, denoted by ψ∗2 , such that

E(W1) ≤ E(W )− (1− p) · ψ∗2
p

≤ E(W ). (A.8)

From (A.8) it must hold that

ψ∗2 ≤ E(W ). (A.9)

Since we have already shown that E(W2) ≥ E(W ), the only admissible element of Ψ2 that satisfies

(A.9) is E(W ), which shows that the latter is the sharp lower bound of E(W1).
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The proof consists of two steps. In the first step, we show that the bounds on the ATEs are valid.

Secondly, we show that these bounds are sharp.

Validity

We start by deriving the valid bounds on the mean potential outcomes within principal strata for

π01 fixed, which contain the respective actual mean potential outcomes with probability one under

the imposed assumptions. For the sake of brevity, we omit conditioning on π01 in the mean potential

outcomes and write E(Y (d)|T = t) rather than E(Y (d)|T = t)(π01) (for d = 1, 0, t = 11, 10, 01, 00).

Secondly, we use our bounds on the mean potential outcomes given π01 to construct bounds on

∆UB
t (π01) and ∆LB

t (π01), the ATEs within principal strata given π01. Thirdly, since π01 is unknown,

we obtain the upper and lower bounds on the ATEs within principal strata by optimizing over π01:

∆UB
t = supπ01∈P∗ ∆UB

t (π01) and ∆LB
t = supπ01∈P∗ ∆LB

t (π01) (for t = 11, 10, 01, 00).

Assume, for the moment, that π01 is fixed (albeit omitted in the notation in the subsequent

discussion). Lemma 1 of Imai (2008), which applies Proposition 4 in Horowitz and Manski (1995)

to the case that the upper and lower bounds of the mixing probabilities of the principal strata

are known, together with Imai’s Proposition 1, which shows the sharpness of the bounds on the

mean potential outcomes (and the ATE), implies that E(Y (1)|Z = 1, T = 11) ≤ Ȳ1,1(max |q11
1,1)

and E(Y (1)|Z = 0, T = 11) ≤ Ȳ0,1(max |q11
0,1). Under Assumption 2, E(Y (1)|Z = 1, T = 11) =

E(Y (1)|Z = 0, T = 11) = E(Y (1)|T = 11) and therefore,

E(Y (1)|T = 11) ≤ E(Y (1)|T = 11)UB = min
(
Ȳ1,1(max |q11

1,1), Ȳ0,1(max |q11
0,1)
)
.

In a symmetric way one can show that

E(Y (1)|T = 11) ≥ E(Y (1)|T = 11)LB = max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)
,

E(Y (0)|T = 00) ≤ E(Y (0)|T = 00)UB = min
(
Ȳ1,0(max |q00

1,0), Ȳ0,0(max |q00
0,0)
)
,

E(Y (0)|T = 00) ≥ E(Y (0)|T = 00)LB = max
(
Ȳ1,0(min |q00

1,0), Ȳ0,0(min |q00
0,0)
)
.

Our assumptions do not provide any restrictions on Y (0)|T = 11 and Y (1)|T = 00, so that

E(Y (0)|T = 11)LB = yLB ≤ E(Y (0)|T = 11) ≤ E(Y (0)|T = 11)UB = yUB ,

and

E(Y (1)|T = 00)LB = yLB ≤ E(Y (1)|T = 00) ≤ E(Y (1)|T = 00)UB = yUB .
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By combining Lemma 2 (the validitity part) with equations (1) to (4), we obtain bounds on the mean

potential outcomes that are valid under our assumptions:

P1|1 · Ȳ1,1 − (P1|0 − π01) · E(Y (1)|T = 11)UB

P1|1 − P1|0 + π01
≤ E(Y (1)|T = 10) ≤

P1|1 · Ȳ1,1 − (P1|0 − π01) · E(Y (1)|T = 11)LB

P1|1 − P1|0 + π01
,

P0|0 · Ȳ0,0 − (P0|1 − π01) · E(Y (0)|T = 00)UB

P1|1 − P1|0 + π01
≤ E(Y (0)|T = 10) ≤

P0|0 · Ȳ0,0 − (P0|1 − π01) · E(Y (0)|T = 00)LB

P1|1 − P1|0 + π01
,

P1|0 · Ȳ0,1 − (P1|0 − π01) · E(Y (1)|T = 11)UB

π01
≤ E(Y (1)|T = 01) ≤

P1|0 · Ȳ0,1 − (P1|0 − π01) · E(Y (1)|T = 11)LB

π01
,

P0|1 · Ȳ1,0 − (P0|1 − π01) · E(Y (0)|T = 00)UB

π01
≤ E(Y (0)|T = 01) ≤

P0|1 · Ȳ1,0 − (P0|1 − π01) · E(Y (0)|T = 00)LB

π01
.

We use the following compact notation to refer to these bounds, E(Y (d)|T = t)LB ≤ E(Y (d)|T =

t) ≤ E(Y (d)|T = t)UB , d = 1, 0, t = 10, 01.

The bounds on the ATE within some stratum t for π10 fixed are given by

∆UB
t (π01) = [E(Y (1)|T = t)UB − E(Y (0)|T = t)LB ],

∆LB
t (π01) = [E(Y (1)|T = t)LB − E(Y (0)|T = t)UB ],

where conditioning on π10 is now made explicit in the bounds.

Finally, since π01 is unknown, the bounds on the ATEs within strata over all admissible π01

(which are shown to be sharp further below) are obtained by the following optimization:

∆UB
t = sup

π01∈P∗
∆UB
t (π01) = sup

π01∈P∗
[E(Y (1)|T = t)UB − E(Y (0)|T = t)LB ],

∆LB
t = inf

π01∈P∗
∆LB
t (π01) = inf

π01∈P∗
[E(Y (1)|T = t)LB − E(Y (0)|T = t)UB ],

which for t = 10, 01 are equivalent to the bounds provided in the main text.

Since Ȳ1,1(max |q11
1,1), Ȳ0,1(max |q11

0,1), Ȳ0,0(max |q00
0,0), and Ȳ1,0(max |q00

1,0) are increasing in

π01, supπ01∈P∗ ∆UB
11 (π01) = ∆UB

11 (πmax
01 ) and supπ01∈P∗ ∆UB

00 (π01) = ∆UB
00 (πmax

01 ). Moreover,

since Ȳ1,1(min |q11
1,1), Ȳ0,1(min |q11

0,1), Ȳ0,0(min |q00
0,0), and Ȳ1,0(min |q00

1,0) are decreasing in π01,

infπ01∈P∗ ∆LB
11 (π01) = ∆LB

11 (πmax
01 ) and infπ01∈P∗ ∆LB

00 (π01) = ∆LB
00 (πmax

01 ).

Sharpness

To demonstrate the sharpness of the proposed bounds, one needs to show that for each

E(Y (d)|T = t) ∈ [E(Y (d)|T = t)LB , E(Y (d)|T = t)UB ], d = 1, 0, t = 11, 10, 01, 00, there exist

distributions of T given Z and of (Y (1), Y (0)) given T and Z that are compatible with a data

generating process that satisfies Assumption 2. As E(Y (d)|T = t)LB and E(Y (d)|T = t)UB

are the smallest and largest values of the interval [E(Y (d)|T = t)LB , E(Y (d)|T = t)UB ], it is

sufficient to prove the existence at those two extremes, because the values of E(Y (d)|T = t)
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inside this interval can be achieved as convex combinations of the probability distributions of T

given Z and the joint distributions of (Y (1), Y (0)) given T and Z that generate E(Y (d)|T = t)LB

and E(Y (d)|T = t)UB . We show that such compatible distributions can indeed be found so that

E(Y (1)|T = t) = E(Y (1)|T = t)UB , t = 10, 01, 00, E(Y (0)|T = t) = E(Y (0)|T = t)UB , t = 11, 10, 01,

E(Y (1)|T = 11) = E(Y (1)|T = 11)LB and E(Y (0)|T = 00) = E(Y (0)|T = 00)LB hold under

Assumption 2. To this end, let hzt (y(1), y(0)) = f(y(1), y(0)|T = t, Z = z) be the conditional density

of (Y (1), Y (0)) evaluated at (y(1), y(0)) given T = t and Z = z. For the sake of brevity, we refer to

hzt (y(1), y(0)) by hzt . Consider the following distributions of T given Z and (Y (1), Y (0)) given T and

Z:

Pr(T = 11|Z = 1) = Pr(T = 11|Z = 0) = P1|0 − π01, (A.10)

Pr(T = 00|Z = 1) = Pr(T = 00|Z = 0) = P0|1 − π01,

Pr(T = 10|Z = 1) = Pr(T = 10|Z = 0) = P1|1 − P1|0 + π01,

Pr(T = 01|Z = 1) = Pr(T = 01|Z = 0) = π01,

where π01 ∈ P∗. This probability distribution satisfies Assumption 2(ii), as it does not depend on Z.

We will now introduce four different specifications for hzt , t = 11, 10, 01, 00, Z = 1, 0, (henceforth

denoted as {hzt }) that are (i) proper probability density functions, (ii) satisfy Assumption 2, (iii) are

compatible with the data generating process, and (iv) reach

Case 1 the lower bound on the ATE of t = 11 and the upper bound on the ATE of t = 00,

Case 2 the upper bound on the ATE of t = 11 and the lower bound on the ATE of t = 00,

Case 3 the upper bound on the ATEs of t = 10 and t = 01,

Case 4 the lower bound on the ATEs of t = 10 and t = 01.

Case 1
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Let the function I{A} stand for the indicator function of a set A. Consider the following {hzt }:

h1
11 =


I{y(0) = yUB} · fY (y(1)|D = 1, Z = 1, Y ≤ F−1

Y1,1
(q11

1,1)) if Ȳ1,1(min |q11
1,1) ≥ Ȳ0,1(min |q11

0,1)

I{y(0) = yUB} ·
{
α1

11fY (y(1)|D = 1, Z = 1, Y ≤ F−1
Y1,1

(q11
1,1))+ if Ȳ1,1(min |q11

1,1) < Ȳ0,1(min |q11
0,1)

+(1− α1
11)fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1))
} ,

h0
11 =


I{y(0) = yUB} ·

{
α0

11fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1))+ if Ȳ1,1(min |q11

1,1) ≥ Ȳ0,1(min |q11
0,1)

+(1− α0
11)fY (y(1)|D = 1, Z = 0, Y ≥ F−1

Y0,1
(1− q11

0,1))
}

I{y(0) = yUB} · fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1)) if Ȳ1,1(min |q11

1,1) < Ȳ0,1(min |q11
0,1)

,

h1
00 =


I{y(1) = yUB} · fY (y(0)|D = 0, Z = 1, Y ≤ F−1

Y1,0
(q00

1,0)) if Ȳ1,0(min |q00
1,0) ≥ Ȳ0,0(min |q00

0,0)

I{y(1) = yUB} ·
{
α1

00fY (y(0)|D = 0, Z = 1, Y ≤ F−1
Y1,0

(q00
1,0))+ if Ȳ1,0(min |q00

1,0) < Ȳ0,0(min |q00
0,0)

+(1− α1
00)fY (y(0)|D = 0, Z = 1, Y ≥ F−1

Y1,0
(1− q00

1,0))
} ,

h0
00 =


I{y(1) = yUB} ·

{
α0

00fY (y(0)|D = 0, Z = 0, Y ≤ F−1
Y0,0

(q00
0,0))+ if Ȳ1,0(min |q00

1,0) ≥ Ȳ0,0(min |q00
0,0)

+(1− α0
00)fY (y(0)|D = 0, Z = 0, Y ≥ F−1

Y0,0
(1− q00

0,0))
}

I{y(1) = yUB} · fY (y(0)|D = 0, Z = 0, Y ≤ F−1
Y0,0

(q00
0,0)) if Ȳ1,0(min |q00

1,0) < Ȳ0,0(min |q00
0,0)

,

hz10 =


(P1|1 − P1|0 + π01)−2 ·

(
P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) ·

∫
h1

11dy(0)
)

if π01 > P1|0 − P1|1

·
(
P0|0 · fY (y(0)|D = 0, Z = 0)− (P0|1 − π01) ·

∫
h0

00dy(1)
)

arbitrary probability density function, (because π10 = 0) if π01 = P1|0 − P1|1.

,

hz01 =


π−2

01 ·
(
P1|0 · fY (y(1)|D = 1, Z = 0)− (P1|0 − π01) ·

∫
h0

11dy(0)
)

if π01 > 0

·
(
P0|1 · fY (y(0)|D = 0, Z = 1)− (P0|1 − π01) ·

∫
h1

00dy(1)
)

arbitrary probability density function, (because π01 = 0) if π01 = 0.

.

where we set π01 to πmax
01 and the parameters

α1
11 =

Ȳ1,1(max |q11
1,1)− Ȳ0,1(min |q11

0,1)

Ȳ1,1(max |q11
1,1)− Ȳ1,1(min |q11

1,1)
,

α0
11 =

Ȳ0,1(max |q11
0,1)− Ȳ1,1(min |q11

1,1)

Ȳ0,1(max |q11
0,1)− Ȳ0,1(min |q11

0,1)
,

α1
00 =

Ȳ1,0(max |q00
1,0)− Ȳ0,0(min |q00

0,0)

Ȳ1,0(max |q00
1,0)− Ȳ1,0(min |q00

1,0)
,

α0
00 =

Ȳ0,0(max |q00
0,0)− Ȳ1,0(min |q00

1,0)

Ȳ0,0(max |q00
0,0)− Ȳ0,0(min |q00

0,0)
,

are chosen so that the mean independence within principal strata holds.

(i) Proper probability functions. We have to check that these functions are proper probability

density functions. For hz11 and hz00 it is sufficient to verify that 0 ≤ αzt ≤ 1 for T = 11, 00 and z = 1, 0,

because then all functions hz11 and hz00 are products of two marginal probability density functions

that are convex combinations of two proper marginal probability density functions. We show this for
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α1
11 and the same argument extends to the other parameters. The parameter α1

11 only occurs in h1
11

if Ȳ1,1(min |q11
1,1) < Ȳ0,1(min |q11

0,1).

Suppose that the denominator of α1
11 is positive so that Ȳ1,1(max |q11

1,1) > Ȳ1,1(min |q11
1,1). As

for the non-negativity of α1
11, it is therefore sufficient to verify that the numerator is nonnegative.

Assume the contrary, so that Ȳ1,1(max |q11
1,1) < Ȳ0,1(min |q11

0,1). Now we have that

Ȳ1,1(min |q11
1,1) ≤ Ȳ1,1 ≤ Ȳ1,1(max |q11

1,1) < Ȳ0,1(min |q11
0,1) ≤ Ȳ0,1 ≤ Ȳ0,1(max |q11

0,1), (A.11)

where the weak inequalities follow from the definition of Ȳz,d(min |qtz,d) and Ȳz,d(max |qtz,d).

Because πmax
01 is an admissible value for π01, we know that there exists some set of

proper probability densities {h∗zt } that satisfy Assumptions 1 and 2 and are compatible

with the data. Consider the value of E[Y (1)|T = 11] that is implied by {h∗zt }, so that

E[Y (1)|T = 11] =
∫∫

y(1)h∗111 dy(0) dy(1) =
∫∫

y(1)h∗011 dy(0) dy(1). We have proven the validity of

the bounds for E[Y (1)|T = 11], so it must hold that

max
{
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
}
≤ E[Y (1)|T = 11] ≤ min

{
Ȳ1,1(max |q11

1,1), Ȳ0,1(max |q11
0,1)
}
.

This results in

Ȳ0,1(min |q11
0,1) ≤ E[Y (1)|T = 11] ≤ Ȳ1,1(max |q11

1,1),

which contradicts (A.11). We therefore conclude that Ȳ0,1(min |q11
0,1) ≤ Ȳ1,1(max |q11

1,1) and

consequently 0 ≤ α1
11. As Ȳ1,0(min |q11

1,0) > Ȳ1,1(min |q11
1,1) we obtain α1

11 ≤ 1.

In the case that Ȳ1,1(max |q11
1,1) = Ȳ1,1(min |q11

1,1), we immediately get that the upper bound on

E[Y (1)|T = 11] is smaller than the lower bound and this contradicts the admissibility of π01.

Let us now consider h1
10. It is a product of two marginal probability densities. Both the first and

the second parenthesis in the expression for h1
10 integrate to (P1|1−P1|0 +π01), so it remains to verify

that both marginal probability density functions are positive.

Consider the first parenthesis, that is
(
P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) ·

∫
h1

11dy(0)
)
,

the marginal density of h1
10 with respect to y(1). Assume that Ȳ1,1(min |q11

1,1) ≥ Ȳ0,1(min |q11
0,1).

Because q11
1,1 =

P1|0−π01

P1|1
, it follows that the parenthesis,(

P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) · fY (y(1)|D = 1, Z = 1, Y ≤ F−1
Y1,1

(q11
1,1))

)
, is zero for

y(1) ≤ F−1
Y1,1

(q11
1,1) and equal to P1|1 · fY (y(1)|D = 1, Z = 1) ≥ 0 elsewhere.

Now assume Ȳ1,1(min |q11
1,1) < Ȳ0,1(min |q11

0,1).

• If q11
1,1 < 0.5 so that F−1

Y1,1
(q11

1,1) < F−1
Y1,1

(1− q11
1,1), we inspect three cases:

(i) y(1) < F−1
Y1,1

(q11
1,1): the second component of the marginal distribution of h1

11 is zero and
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the fact that 0 ≤ α1
11 ≤ 1 guarantees the non-negativity of the parenthesis,

(ii) F−1
Y1,1

(q11
1,1) < y(1) < F−1

Y1,1
(1− q11

1,1): the marginal density of h1
11 is zero, so the parenthesis

is equal to P1|1fY (y(1)|Z = 1, D = 1),

(iii) y(1) > F−1
Y1,1

(1− q11
1,1): the first component of the marginal distribution of h1

11 is zero and

the fact that 0 ≤ α1
11 ≤ 1 guarantees the non-negativity of the parenthesis.

• If q11
1,1 > 0.5 so that F−1

Y1,1
(q11

1,1) > F−1
Y1,1

(1− q11
1,1), we also inspect three cases:

(i) y(1) < F−1
Y1,1

(1 − q11
1,1): the second component of the marginal distribution of h1

11 is zero

and the fact that 0 ≤ α1
11 ≤ 1 guarantees the non-negativity of the parenthesis

(ii) F−1
Y1,1

(1− q11
1,1) < y(1) < F−1

Y1,1
(q11

1,1): both components of the marginal distribution of h1
11

are equal to fY (y(1)|Z = 1, D = 1)/q11
1,1 and therefore the whole parenthesis becomes 0.

(iii) y(1) > F−1
Y1,1

(q11
1,1): the first component of the marginal distribution of h1

11 is zero and the

fact that 0 ≤ α1
11 ≤ 1 guarantees the non-negativity of the parenthesis.

The non-negativity of the second marginal of h1
10 follows in a similar fashion.

(ii) Mean independence within principal strata

We have to show that for a given type T = t, the marginal probability densities of {hzt } produce

the same expected values of the potential outcomes across z = 1, 0. Let us consider h1
11 and h0

11. Both

probability density functions lead to E[Y (0)|T = 11] = yUB . If Ȳ1,1(min |q11
1,1) ≥ Ȳ0,1(min |q11

0,1), then

∫∫
y(1)h1

11 dy(1) dy(0) = Ȳ1,1(min |q11
1,1),

and

∫∫
y(1)h0

11 dy(1) dy(0) =

∫∫
y(1)

{
α0

11fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1))+

+(1− α0
11)fY (y(1)|D = 1, Z = 0, Y ≥ F−1

Y0,1
(1− q11

0,1)) dy(1) dy(0)
}

= α0
11Ȳ0,1(min |q11

0,1) + (1− α0
11)Ȳ0,1(max |q11

0,1)

= α0
11

(
Ȳ0,1(min |q11

0,1)− Ȳ0,1(max |q11
0,1)
)

+ Ȳ0,1(max |q11
0,1)

= Ȳ1,1(min |q11
1,1).

Now if Ȳ1,1(min |q11
1,1) < Ȳ0,1(min |q11

0,1), we have that

∫∫
y(1)h0

11 dy(1) dy(0) = Ȳ0,1(min |q11
0,1),
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and

∫∫
y(1)h1

11 dy(1) dy(0) =

∫∫
y(1)

{
α1

11fY (y(1)|D = 1, Z = 1, Y ≤ F−1
Y1,1

(q11
1,1))+

+(1− α1
11)fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1)) dy(1) dy(0)
}

= α1
11Ȳ1,1(min |q11

1,1) + (1− α1
11)Ȳ1,1(max |q11

1,1)

= α1
11

(
Ȳ1,1(min |q11

1,1)− Ȳ1,1(max |q11
1,1)
)

+ Ȳ1,1(max |q11
1,1)

= Ȳ0,1(min |q11
0,1).

Mean independence of potential outcomes within principal strata for T = 11, 00 together with the

definition of {hzt } in (A.11) guarantees that the mean independence within principal strata must also

hold for T = 10, 01.

(iii) Compatibility with the data generating process. From the definition of {hzt } (A.11),

it follows that {hzt } are compatible with the data generating process:

P1|1 · fY (y(1)|Z = 1, D = 1) = (P1|0 − π01)

∫
h1

11 dy(0) + (P1|1 − P1|0 + π01)

∫
h1

10 dy(0),

P1|0 · fY (y(1)|Z = 0, D = 1) = (P1|0 − π01)

∫
h0

11 dy(0) + π01

∫
h0

01 dy(0), (A.12)

P0|1 · fY (y(0)|Z = 1, D = 0) = π01

∫
h1

01 dy(1) + (P0|1 − π01)

∫
h1

00 dy(1),

P0|0 · fY (y(0)|Z = 0, D = 0) = (P1|1 − P1|0 + π01)

∫
h0

10 dy(1) + (P0|1 − π01)

∫
h0

00 dy(1).

The fact that {hzt } are proper probability density functions and compatible with the data gener-

ating process and that they satisfy Assumption 2 extends to Cases 2 – 4.

(iv) The upper bound on the ATE of T = 11 and the lower bound on the ATE of

T = 00 are attained. We have already shown in part (ii) that

E(Y (0)|T = 11) =

∫∫
y(0)hz11 dy(1) dy(0) = yUB , (A.13)

E(Y (1)|T = 00) =

∫∫
y(1)hz00 dy(1) dy(0) = yUB ,

E(Y (1)|T = 11) =

∫∫
y(1)hz11 dy(1) dy(0) = max

(
Ȳ0,1(min |q11

0,1), Ȳ1,1(min |q11
1,1)
)
,

hold for z = 1, 0. We can show in an analogous way that the following equation holds:

E(Y (0)|T = 00) =

∫∫
y(0)hz00 dy(1) dy(0) = max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)
.

The first equality signs in each of the previous four lines in (A.13) and (A.12) follow from (A.11).

The respective second equations in the first and second lines follow from the fact that h11 is zero at
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y(0) 6= yUB and that h00 is zero at y(1) 6= yUB . We recall the definition of Ȳz,d(min |qtz,d) = E(Y |Z =

z,D = d, Y ≤ F−1
Yz,d

(qtz,d)) that motivates the respective second equations in third and fourth lines.

We now inspect the remaining mean potential outcomes within principal strata. Because of mean

independence within principal strata we obtain for both z = 1 and z = 0:

E(Y (1)|T = 10) =

∫∫
y(1)hz10 dy(1) dy(0) =

=

∫∫
y(1)

1

(P1|1 − P1|0 + π01)2
·
(
P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) ·

∫
hz11dy(0)

)
·

·
(
P0|0 · fY (y(0)|D = 0, Z = 0)− (P0|1 − π01) ·

∫
hz00dy(1)

)
dy(1) dy(0) =

=
1

(P1|1 − P1|0 + π01)

∫
y(1)

(
P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) ·

∫
hz11dy(0)

)
dy(1) ·

·
∫ (

P0|0 · fY (y(0)|D = 0, Z = 0)− (P0|1 − π01) ·
∫
hz00dy(1)

)
P1|1 − P1|0 + π01

dy(0) =

=
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ0,1(min |q11

0,1), Ȳ1,1(min |q11
1,1)
)

P1|1 − P1|0 + π01
.

The first equation follows from (A.11). In the second equation we plug in hz10. In the third equation

we use the fact that the part in the first parenthesis in the definition of hz10 does not depend on y(0)

and that the second part does not depend on y(1). The last equation follows from (A.13) and from

the fact that the second integral is equal to one. We obtain the following equations in an analogous

way

E(Y (0)|T = 10) =

∫∫
y(0)hz10 dy(1) dy(0) =

P0|0 · Ȳ0,0 − (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01
,

E(Y (1)|T = 01) =

∫∫
y(1)hz01 dy(1) dy(0) =

P1|0 · Ȳ0,1 − (P1|0 − π01) ·max
(
Ȳ0,1(min |q11

0,1), Ȳ1,1(min |q11
1,1)
)

π01
,

E(Y (0)|T = 01) =

∫∫
y(0)hz01 dy(1) dy(0) =

P0|1 · Ȳ1,0 − (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

π01
.

This demonstrates that E(Y (1)|T = t)UB , t = 10, 01, 00, E(Y (0)|T = t)UB , t = 11, 10, 01,

E(Y (1)|T = 11)LB , and E(Y (0)|T = 00)LB are sharp bounds. Therefore, we have found

distributions of the potential outcomes (Y (1), Y (0))) given T , Z and Pr(T = t|Z = z), i.e. strata

probabilities given Z (which are uniquely determined by the value of π01 = πmax
01 ), that achieve the

lower bound on the ATE for t = 11 and the upper bound on the ATE for t = 00. In Appendix A.1.3

we show that if P∗ is non-empty, then πmax
01 = min{P1|0, P0|1} must be admissible.

Sharpness of the bounds in Case 2 can be proven in an analogous way. Cases 3 and 4 follow

similarly, but with the important difference that the bounds are suprema (infima) of the bounds

conditional on π01. In these cases, we also show that the suprema (infima) of P∗ are attained.
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Case 2 By setting π01 to πmax
01 , the distribution of the types to (A.10), ht for t ∈ {11, 10, 01, 00}

to

h1
11 =


I{y(0) = yLB} · fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1)) if Ȳ1,1(max |q11
1,1) ≤ Ȳ0,1(max |q11

0,1)

I{y(0) = yLB} ·
{
α1

11fY (y(1)|D = 1, Z = 1, Y ≤ F−1
Y1,1

(q11
1,1))+ if Ȳ1,1(max |q11

1,1) > Ȳ0,1(max |q11
0,1)

+(1− α1
11)fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1))
} ,

h0
11 =


I{y(0) = yLB} ·

{
α0

11fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1))+ if Ȳ1,1(max |q11

1,1) ≤ Ȳ0,1(max |q11
0,1)

+(1− α0
11)fY (y(1)|D = 1, Z = 0, Y ≥ F−1

Y0,1
(1− q11

0,1))
}

I{y(0) = yLB} · fY (y(1)|D = 1, Z = 0, Y ≥ F−1
Y0,1

(1− q11
0,1)) if Ȳ1,1(max |q11

1,1) > Ȳ0,1(max |q11
0,1)

,

h1
00 =


I{y(1) = yLB} · fY (y(0)|D = 0, Z = 1, Y ≥ F−1

Y1,0
(1− q00

1,0)) if Ȳ1,0(max |q00
1,0) ≤ Ȳ0,0(max |q00

0,0)

I{y(1) = yLB} ·
{
α1

00fY (y(0)|D = 0, Z = 1, Y ≤ F−1
Y1,0

(q00
1,0))+ if Ȳ1,0(max |q00

1,0) > Ȳ0,0(max |q00
0,0)

+(1− α1
00)fY (y(0)|D = 0, Z = 1, Y ≥ F−1

Y1,0
(1− q00

1,0))
} ,

h0
00 =


I{y(1) = yLB} ·

{
α0

00fY (y(0)|D = 0, Z = 0, Y ≤ F−1
Y0,0

(q00
0,0))+ if Ȳ1,0(max |q00

1,0) ≤ Ȳ0,0(max |q00
0,0)

+(1− α0
00)fY (y(0)|D = 0, Z = 0, Y ≥ F−1

Y0,0
(1− q00

0,0))
}

I{y(1) = yLB} · fY (y(0)|D = 0, Z = 0, Y ≥ F−1
Y0,0

(1− q00
0,0)) if Ȳ1,0(max |q00

1,0) > Ȳ0,0(max |q00
0,0)

,

and hzt for t = 10, 01 and z = 1, 0 to values as defined in (A.11), where

α1
11 =

Ȳ1,1(max |q11
1,1)− Ȳ0,1(max |q11

0,1)

Ȳ1,1(max |q11
1,1)− Ȳ1,1(min |q11

1,1)
,

α0
11 =

Ȳ0,1(max |q11
0,1)− Ȳ1,1(max |q11

1,1)

Ȳ0,1(max |q11
0,1)− Ȳ0,1(min |q11

0,1)
,

α1
00 =

Ȳ1,0(max |q00
1,0)− Ȳ0,0(max |q00

0,0)

Ȳ1,0(max |q00
1,0)− Ȳ1,0(min |q00

1,0)
,

α0
00 =

Ȳ0,0(max |q00
0,0)− Ȳ1,0(max |q00

1,0)

Ȳ0,0(max |q00
0,0)− Ȳ0,0(min |q00

0,0)
,

one obtains the lower bound on the ATE for t = 11 and the upper bound on the ATE for t = 00.

Case 3
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For a given value of π01, ht for t = 11, 10, 01, 00 is set to

h1
11 =


I{y(0) = yLB} · fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1)) if Ȳ1,1(max |q11
1,1) ≤ Ȳ0,1(max |q11

0,1)

I{y(0) = yLB} ·
{
α1

11fY (y(1)|D = 1, Z = 1, Y ≤ F−1
Y1,1

(q11
1,1))+ if Ȳ1,1(max |q11

1,1) > Ȳ0,1(max |q11
0,1)

+(1− α1
11)fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1))
} ,

h0
11 =


I{y(0) = yLB} ·

{
α0

11fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1))+ if Ȳ1,1(max |q11

1,1) ≤ Ȳ0,1(max |q11
0,1)

+(1− α0
11)fY (y(1)|D = 1, Z = 0, Y ≥ F−1

Y0,1
(1− q11

0,1))
}

I{y(0) = yLB} · fY (y(1)|D = 1, Z = 0, Y ≥ F−1
Y0,1

(1− q11
0,1)) if Ȳ1,1(max |q11

1,1) > Ȳ0,1(max |q11
0,1)

,

h1
00 =


I{y(1) = yUB} · fY (y(0)|D = 0, Z = 1, Y ≤ F−1

Y1,0
(q00

1,0)) if Ȳ1,0(min |q00
1,0) ≥ Ȳ0,0(min |q00

0,0)

I{y(1) = yUB} ·
{
α1

00fY (y(0)|D = 0, Z = 1, Y ≤ F−1
Y1,0

(q00
1,0))+ if Ȳ1,0(min |q00

1,0) < Ȳ0,0(min |q00
0,0)

+(1− α1
00)fY (y(0)|D = 0, Z = 1, Y ≥ F−1

Y1,0
(1− q00

1,0))
} ,

h0
00 =


I{y(1) = yUB} ·

{
α0

00fY (y(0)|D = 0, Z = 0, Y ≤ F−1
Y0,0

(q00
0,0))+ if Ȳ1,0(min |q00

1,0) ≥ Ȳ0,0(min |q00
0,0)

+(1− α0
00)fY (y(0)|D = 0, Z = 0, Y ≥ F−1

Y0,0
(1− q00

0,0))
}

I{y(1) = yUB} · fY (y(0)|D = 0, Z = 0, Y ≤ F−1
Y0,0

(q00
0,0)) if Ȳ1,0(min |q00

1,0) < Ȳ0,0(min |q00
0,0)

,(A.14)

hz10 =


(P1|1 − P1|0 + π01)−2 ·

(
P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) ·

∫
h1

11dy(0)
)

if π01 > P1|0 − P1|1

·
(
P0|0 · fY (y(0)|D = 0, Z = 0)− (P0|1 − π01) ·

∫
h0

00dy(1)
)

I{y(0) = yLB} · I{y(1) = yUB} if π01 = P1|0 − P1|1.

,

hz01 =


π−2

01 ·
(
P1|0 · fY (y(1)|D = 1, Z = 0)− (P1|0 − π01) ·

∫
h0

11dy(0)
)

if π01 > 0

·
(
P0|1 · fY (y(0)|D = 0, Z = 1)− (P0|1 − π01) ·

∫
h1

00dy(1)
)

I{y(0) = yLB} · I{y(1) = yUB} if π01 = 0.

,

where

α1
11 =

Ȳ1,1(max |q11
1,1)− Ȳ0,1(max |q11

0,1)

Ȳ1,1(max |q11
1,1)− Ȳ1,1(min |q11

1,1)
,

α0
11 =

Ȳ0,1(max |q11
0,1)− Ȳ1,1(max |q11

1,1)

Ȳ0,1(max |q11
0,1)− Ȳ0,1(min |q11

0,1)
,

α1
00 =

Ȳ1,0(max |q00
1,0)− Ȳ0,0(min |q00

0,0)

Ȳ1,0(max |q00
1,0)− Ȳ1,0(min |q00

1,0)
,

α0
00 =

Ȳ0,0(max |q00
0,0)− Ȳ1,0(min |q00

1,0)

Ȳ0,0(max |q00
0,0)− Ȳ0,0(min |q00

0,0)
,

entails the upper bounds on the ATE for t = 10 if π01 maximizes (7) and the upper bound on the

ATE for t = 01 if π01 maximizes (8). Note that because the bounds conditional on π01 are continuous

in π01 (as shown in Appendix A.1.4) and P∗ is an interval (as shown in Lemma 1), we get that the

maxima of P∗ are attained by the extreme value theorem.

Case 4
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Consider the following conditional densities

h1
11 =


I{y(0) = yUB} · fY (y(1)|D = 1, Z = 1, Y ≤ F−1

Y1,1
(q11

1,1)) if Ȳ1,1(min |q11
1,1) ≥ Ȳ0,1(min |q11

0,1)

I{y(0) = yUB} ·
{
α1

11fY (y(1)|D = 1, Z = 1, Y ≤ F−1
Y1,1

(q11
1,1))+ if Ȳ1,1(min |q11

1,1) < Ȳ0,1(min |q11
0,1)

+(1− α1
11)fY (y(1)|D = 1, Z = 1, Y ≥ F−1

Y1,1
(1− q11

1,1))
} ,

h0
11 =


I{y(0) = yUB} ·

{
α0

11fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1))+ if Ȳ1,1(min |q11

1,1) ≥ Ȳ0,1(min |q11
0,1)

+(1− α0
11)fY (y(1)|D = 1, Z = 0, Y ≥ F−1

Y0,1
(1− q11

0,1))
}

I{y(0) = yUB} · fY (y(1)|D = 1, Z = 0, Y ≤ F−1
Y0,1

(q11
0,1)) if Ȳ1,1(min |q11

1,1) < Ȳ0,1(min |q11
0,1)

,

h1
00 =


I{y(1) = yLB} · fY (y(0)|D = 0, Z = 1, Y ≥ F−1

Y1,0
(1− q00

1,0)) if Ȳ1,0(max |q00
1,0) ≤ Ȳ0,0(max |q00

0,0)

I{y(1) = yLB} ·
{
α1

00fY (y(0)|D = 0, Z = 1, Y ≤ F−1
Y1,0

(q00
1,0))+ if Ȳ1,0(max |q00

1,0) > Ȳ0,0(max |q00
0,0)

+(1− α1
00)fY (y(0)|D = 0, Z = 1, Y ≥ F−1

Y1,0
(1− q00

1,0))
} ,

h0
00 =


I{y(1) = yLB} ·

{
α0

00fY (y(0)|D = 0, Z = 0, Y ≤ F−1
Y0,0

(q00
0,0))+ if Ȳ1,0(max |q00

1,0) ≤ Ȳ0,0(max |q00
0,0)

+(1− α0
00)fY (y(0)|D = 0, Z = 0, Y ≥ F−1

Y0,0
(1− q00

0,0))
}

I{y(1) = yLB} · fY (y(0)|D = 0, Z = 0, Y ≥ F−1
Y0,0

(1− q00
0,0)) if Ȳ1,0(max |q00

1,0) > Ȳ0,0(max |q00
0,0)

,

hz10 =


(P1|1 − P1|0 + π01)−2 ·

(
P1|1 · fY (y(1)|D = 1, Z = 1)− (P1|0 − π01) ·

∫
h1

11dy(0)
)

if π01 > P1|0 − P1|1

·
(
P0|0 · fY (y(0)|D = 0, Z = 0)− (P0|1 − π01) ·

∫
h0

00dy(1)
)

I{y(0) = yUB} · I{y(1) = yLB} if π01 = P1|0 − P1|1.

,

hz01 =


π−2

01 ·
(
P1|0 · fY (y(1)|D = 1, Z = 0)− (P1|0 − π01) ·

∫
h0

11dy(0)
)

if π01 > 0

·
(
P0|1 · fY (y(0)|D = 0, Z = 1)− (P0|1 − π01) ·

∫
h1

00dy(1)
)

I{y(0) = yUB} · I{y(1) = yLB} if π01 = 0,

,

where

α1
11 =

Ȳ1,1(max |q11
1,1)− Ȳ1,0(min |q11

1,0)

Ȳ1,1(max |q11
1,1)− Ȳ1,1(min |q11

1,1)
,

α0
11 =

Ȳ0,1(max |q11
0,1)− Ȳ1,1(min |q11

1,1)

Ȳ0,1(max |q11
0,1)− Ȳ0,1(min |q11

0,1)
,

α1
00 =

Ȳ1,0(max |q00
1,0)− Ȳ0,0(max |q00

0,0)

Ȳ1,0(max |q00
1,0)− Ȳ1,0(min |q00

1,0)
,

α0
00 =

Ȳ0,0(max |q00
0,0)− Ȳ1,0(max |q00

1,0)

Ȳ0,0(max |q00
0,0)− Ȳ0,0(min |q00

0,0)
,

entails the lower bound on the ATE for t = 10 if π01 minimizes (7) and the lower bound on the ATE

for t = 01 if π01 minimizes (8). The bounds conditional on π01 are continuous in π01 (as shown in

Appendix A.1.4) and P∗ is an interval (as shown in Lemma 1), so that the minima of P∗ are attained

by the extreme value theorem. This ends the proof. �
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A.1.3 Identified set for the proportion of defiers based on moment

inequalities

From the construction of {hzt } in Appendix A.1.2 we note that, if P∗ is non-empty, so that there exists

at least one value of π01 that is admissible, then πmax
01 = min{P1|0, P0|1} must also be admissible. The

reason is that Ȳ0,1(min |q11
0,1), Ȳ0,1(min |q11

1,1), Ȳ1,0(min |q00
1,0) and Ȳ0,0(min |q00

0,0) are non-increasing in

π01 and Ȳ1,1(max |q11
1,1), Ȳ0,1(max |q11

0,1), Ȳ0,0(max |q00
0,0) and Ȳ1,0(max |q00

1,0) are non-decreasing in π01.

Therefore if the following four inequalities hold for a particular value of π∗01,

Ȳ0,1(min |q11
0,1) ≤ Ȳ1,1(max |q11

1,1)

Ȳ1,1(min |q11
1,1) ≤ Ȳ0,1(max |q11

0,1)

Ȳ1,0(min |q00
1,0) ≤ Ȳ0,0(max |q00

0,0) (A.15)

Ȳ0,0(min |q00
0,0) ≤ Ȳ1,0(max |q00

1,0)

then they must also hold for any π01 > π∗01.

The inequalities (A.15) guarantee that 0 ≤ αzt ≤ 1 for t = 11, 00 and Z = 0, 1 and hence

the possibility of constructing {hzt } as outlined in (A.11). This makes any π01 ≤ πmax
01 admissible

and therefore (A.15) provides a sufficient condition for π01 ∈ P∗. But at the same time, for an

admissible value of π01, inequalities (A.15) must hold so that the upper bounds of E[Y (1)|T = 11]

and E[Y (0)|T = 00] are larger than the lower bounds, such that (A.15) is a necessary condition

for π01 ∈ P∗. This shows that, given that π01 ∈ P, (A.15) is a necessary and sufficient condition for

the admissibility of π01 under Assumptions 1 and 2, that is π01 ∈ P∗.

A.1.4 Continuity of bounds on the ATE for compliers and defiers in the

share of defiers

Here we prove the continuity of the upper bound on the ATE for compliers conditional on π01. The

continuity of the other bounds on the ATE for other principal strata follows similarly. We make the

dependence of quantiles on the value of π01 explicit. The quantiles qtz,d are continuous functions in

π01, the trimmed means are continuous in quantiles and therefore it is sufficient to verify cases when

the denominator in the analytic expression E[Y (1)|T = 10] for is zero. Therefore we have to show

that

lim
π01→(P1|0−P1|1)+

E[Y (1)|T = 10](π01) = yUB ,

for any admissible value of π01.
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Note that q11
1,1(P1|0 − P1|1) = 1 and q11

0,1(P1|0 − P1|1) =
P1|1
P1|0

. If Ȳ1,1(min |1) > Ȳ0,1(min |P1|1
P1|0

)

lim
π01→(P1|0−P1|1)+

P1|1 · Ȳ1,1 − (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1(π01)), Ȳ0,1(min |q11
0,1(π01))

)
P1|1 − P1|0 + π01

= lim
π01→(P1|0−P1|1)+

Ȳ1,1(min |q11
1,1(π01))− (P1|0 − π01)

∂Ȳ1,1(min |q111,1)

∂q111,1

∂q111,1
∂π01

1

= Ȳ1,1 − (P1|1)
(
Ȳ1,1 − yUB

)(
− 1

P1|1

)
= yUB ,

where the first equation follows from the l’Hospital rule and in the second we used the definition of

the trimmed mean. If Ȳ1,1(min |1) < Ȳ0,1(min |P1|1
P1|0

), then we get that Ȳ1,1(min |1) = Ȳ1,1(max |1) <

Ȳ0,1(min |P1|1
P1|0

), which contradicts the admissibility of π01 = P1|0−P1|1, because then the upper bound

for E[Y (1)|T = 11] is smaller than its’ lower bound.

Using the same argument we get that

lim
π01→(P1|0−P1|1)+

E[Y (0)|T = 10](π01) = yLB ,

and this leads to

lim
π01→(P1|0−P1|1)+

∆UB
10 (π01) = yUB − yLB .

The intuitive argument is that we could have chosen the parametrization differently. Instead of

expressing the bounds in π01, we could have expressed the bounds in π11 or π00 and in such case, we

would not get zero in the denominator for the analytic expression for the bounds on compliers but

for alwaystakers or nevertakers.

A.1.5 Proof of the validity and the sharpness of the bounds on the mean

potential outcomes E(Y (1)), E(Y (0))

We only demonstrate sharpness of the upper bounds on E(Y (1)), E(Y (0)), as the proof for the lower

bounds is symmetric and therefore omitted. The proof consists of three steps. In the first step, we show

that for π01 fixed, the upper bounds on E(Y (1))UB , E(Y (0))UB in expressions (11) and (12) in the

main text are valid in the sense that they are weakly greater than E(Y (1)) and E(Y (0)), respectively,

with probability one. In the second step, we prove that these upper bounds are sharp conditional

on π01 by showing that there exists a distribution of T given Z and of (Y (1), Y (0)) given T and Z

(for T = 11, 10, 01, 00 and Z = 1, 0) that is compatible with a data generating process satisfying

Assumption 2 and at the same time yielding E(Y (1)) = E(Y (1))UB and E(Y (0)) = E(Y (0))UB .

Thirdly, since π01 is unknown, the sharp upper bounds over all admissible π01 are (by the virtue of

the extreme value theorem and the continuity of the bounds in π01 as shown in Appendix A.1.4)
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obtained by taking the supremum of the conditional upper bounds w.r.t. π01, which is shown to be

achieved at π01 = πmin
01 .

We start the proof by showing that for π01 given,

E(Y (1)) ≤ E(Y (1))UB(π01) = (P0|1 − π01) · yUB − (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+ P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1,

E(Y (0)) ≤ E(Y (0))UB(π01) = (P1|0 − π01) · yUB − (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

+ P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0,

so that the upper bounds are valid. For the sake of notational convenience we omit (π01) in the

subsequent discussion. Note that by the law of total probability,

E(Y (0)) = π11 ·E(Y (0)|T = 11)+π10 ·E(Y (0)|T = 10)+π01 ·E(Y (0)|T = 01)+π00 ·E(Y (0)|T = 00),

which, using equations (3) and (4), can be written as

E(Y (0)) = π11 · E(Y (0)|T = 11) + P0|0 · Ȳ0,0 − π00 · E(Y (0)|T = 00)

+ P0|1 · Ȳ1,0 − π00 · E(Y (0)|T = 00) + π00 · E(Y (0)|T = 00)

= π11 · E(Y (0)|T = 11)− π00 · E(Y (0)|T = 00) + P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0 (A.16)

= (P1|0 − π01) · E(Y (0)|T = 11)− (P0|1 − π01) · E(Y (0)|T = 00) + P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0.

Similarly,

E(Y (1)) = π11 · E(Y (1)|T = 11) + π10 · E(Y (1)|T = 10) + π01 · E(Y (1)|T = 01) + π00 · E(Y (1)|T = 00)

= (P0|1 − π01) · E(Y (1)|T = 00)− (P1|0 − π11) · E(Y (1)|T = 11) + P1|1 · Ȳ1,1 + P1|0 · Ȳ0,1,

(A.17)

where we use equations (1) and (2) to go from the first to the second line.

It is easy to see that E(Y (0))UB is a valid upper bound for E(Y (0)):

E(Y (0))UB − E(Y (0)) = (P1|0 − π01) · (yUB − E(Y (0)|T = 11))

+ (P0|1 − π01) · (E(Y (0)|T = 00)−max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)
) ≥ 0,

because (P1|0 − π01) ≥ 0, (P0|1 − π01) ≥ 0, yUB ≥ E(Y (0)|T = 11), and, as already shown in Section

A.1.2, E(Y (0)|T = 00) ≥ E(Y (0)|T = 00)LB = max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)
. In a similar way
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one can prove the validity of E(Y (1))UB .

To demonstrate sharpness we need to show that for each E(Y (d)) ∈ [E(Y (d))LB , E(Y (d))UB ], d =

1, 0 there exist principal strata proportions Pr(T = t|Z = z) : t = 11, 10, 01, 00, z = 1, 0 and potential

outcome distributions f(y(1), y(0)|t, z) : T = 11, 10, 01, 00, Z = 1, 0 that are compatible with a data

generating process that satisfies Assumptions 2. As E(Y (d))LB , E(Y (d))UB , d = 1, 0 are the smallest

and largest values of the interval [E(Y (d))LB , E(Y (d))UB ], it is sufficient to prove the existence at

those two extremes. The reason is that the values of E(Y (d)|T = t) inside this interval can be achieved

as convex combinations of the potential outcome distributions f(y(1), y(0)|t, z) : t = 11, 10, 01, 00, z =

1, 0 that generate E(Y (d)|T = t)LB and E(Y (d)|T = t)UB . For the upper bound, one therefore has

to show that such distributions exist so that E(Y (d)) = E(Y (d))UB .

To this end, reconsider (A.10) and (A.11), which have been shown to be consistent with the data

generating process (see Section A.1.2), satisfy Assumption 2, and give

∫
y(0)hz11 dy(1) = E(Y (0)|T = 11) = yUB ,

∫
y(1)hz00 dy(0) = E(Y (1)|T = 00) = yUB ,∫

y(1)hz11 dy(0) = E(Y (1)|T = 11) = max
(
Ȳ0,1(min |q11

0,1), Ȳ1,1(min |q11
1,1)
)
,

and ∫
y(0)hz00 dy(1) = E(Y (0)|T = 00) = max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)
.

Therefore, (A.10) and (A.11) imply E(Y (1)) = E(Y (1))UB and E(Y (0)) = E(Y (0))UB , which proves

that they are sharp for a given value of π01.

Finally, to obtain the upper bound on E(Y (0)) over all admissible values of π01, we show that

E(Y (0))UB(π01), where we now make conditioning on π01 explicit again, is a decreasing function of

π01 so that E(Y (0))UB = supπ01∈P∗ [E(Y (0))UB(π01)] = E(Y (0))UB(πmin
01 ). In an analogous way

one can demonstrate that E(Y (1))UB = supπ01∈P∗ [E(Y (1))UB(π01)] = E(Y (1))UB(πmin
01 ), which is

omitted for the sake of brevity. We first rewrite E(Y (0))UB(π01) as

E(Y (0))UB(π01) = min

 (P1|0 − π01) · yUB − (P0|1 − π01) · Ȳ0,0(min |q00
0,0) + P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0

(P1|0 − π01) · yUB − (P0|1 − π01) · Ȳ1,0(min |q00
1,0) + P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0


= min

 E(Y (0))UB1 (π01)

E(Y (0))UB2 (π01)

 .

Note that if Y is a random variable with a continuous probability density function, the trimmed

means Ȳz,0(min |q00
z,0) are differentiable in quantile q00

z,0, because the quantile is differentiable in π01.
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We can therefore verify that both E(Y (0))UB1 (π01) and E(Y (0))UB2 (π01) are decreasing in π01.

∂E(Y (0))UB1

∂π01
= (Ȳ0,0(min |q00

0,0)− yUB)− (P0|1 − π01) ·
∂Ȳ0,0(min |q00

0,0)

∂π01
< 0

and

∂E(Y (0))UB2

∂π01
= (Ȳ1,0(min |q00

1,0)− yUB)− (P0|1 − π01) ·
∂Ȳ1,0(min |q00

1,0)

∂π01
< 0.

The two inequalities are always satisfied, because 0 ≤ (P0|1 − π01) ≤ 1 and
∂Ȳ1,0(min |q001,0)

∂π01
(the

marginal decrease in Ȳz,0(min |q00
z,0) due to a marginal increase in π01), albeit always negative, cannot

be larger in absolute terms than the difference of Ȳz,0(min |q00
z,0) and the largest possible value yUB .

Since the minimum of two monotonically decreasing functions is itself a monotonically decreasing

function we conclude that supπ01∈P∗ [E(Y (0))UB(π01)] = E(Y (0))UB(πmin
01 ), because P∗ is a compact

set. This ends the proof. �

A.1.6 Comparing our bounds to Manski (1990)

This section compares our bounds under mean independence within strata to those of Manski (1990).

First, we write Manski’s upper bound, denoted by ∆UB
Ma , in our notation as

∆UB
Ma = min(P1|1 · Ȳ1,1 + P0|1 · yUB , P1|0 · Ȳ0,1 + P0|0 · yUB)

− max(P0|0 · Ȳ0,0 + P1|0 · yLB , P0|1 · Ȳ1,0 + P1|1 · yLB).

In order to see the differences between Manski’s bounds and ours, consider the case where positive

monotonicity is consistent with the data (P1|1 > P1|0, which implies P0|0 > P0|1). We have that19

P1|1 · Ȳ1,1 + P0|1 · yUB ≤ P1|0 · Ȳ0,1 + P0|0 · yUB (A.18)

(P1|0 − P1|1) · yUB ≤ (P1|0 − P1|1) ·
(

P1|0

P1|0 − P1|1
· Ȳ0,1 −

P1|1

P1|0 − P1|1
· Ȳ1,1

)
yUB ≥

P1|0

P1|0 − P1|1
· Ȳ0,1 −

P1|1

P1|0 − P1|1
· Ȳ1,1.

This is always satisfied since
P1|0

P1|0−P1|1
· Ȳ0,1 −

P1|1
P1|0−P1|1

· Ȳ1,1, which is a weighted difference of two

means, cannot be higher than yUB , which is the largest value that Y can theoretically take. A

symmetric argument can be used to show that max(P0|0 · Ȳ0,0 + P1|0 · yLB , P0|1 · Ȳ1,0 + P1|1 · yLB) =

P0|0 · Ȳ0,0 + P1|0 · yLB .

Therefore, ∆UB
Ma simplifies to

∆UB
Ma =

(
P1|1 · Ȳ1,1 + P0|1 · yUB

)
−
(
P0|0 · Ȳ0,0 + P1|0 · yLB

)
.

19Note that the sign of the inequality changes from the second to the third line because P1|0 − P1|1 is negative.
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On the other hand, since Ȳ0,1(min |q11,0
0,1 ) = Ȳ0,1 and Ȳ1,0(min |q00,0

1,0 ) = Ȳ1,0, our upper bound becomes

∆UB =
(
P1|1 · Ȳ1,1 + P1|0 · Ȳ0,1 − P1|0 ·max(Ȳ1,1(min |q11,0

1,1 ), Ȳ0,1) + P0|1 · yUB
)

−
(
P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0 − P0|1 ·min(Ȳ0,0(max |q00,0

0,0 ), Ȳ1,0) + P1|1 · yLB
)
.

This implies that

∆UB −∆UB
Ma = P1|0 · (max(Ȳ1,1(min |q11,0

1,1 ), Ȳ0,1)− Ȳ0,1)

− P0|1 · (min(Ȳ0,0(max |q00,0
0,0 ), Ȳ1,0)− Ȳ1,0) ≤ 0 (A.19)

It is easy to see that ∆UB = ∆UB
Ma , unless either Ȳ1,1(min |q11,0

1,1 ) > Ȳ0,1 or Ȳ0,0(max |q00,0
0,0 ) < Ȳ1,0

(or both) is satisfied. As discussed in Section 3.2, any of these inequalities can be interpreted as a

violation of Assumptions 2 and 3. This shows that Manski’s and our bounds are the same unless we

detect a violation of the LATE assumptions.

A.1.7 Comparing our bounds to Kitagawa (2009)

To compare our bounds to those proposed in Kitagawa (2009), we need to introduce some extra

notation. Let

p1(y) = f(y,D = 1|Z = 1), p0(y) = f(y,D = 0|Z = 1),

q1(y) = f(y,D = 1|Z = 0), q0(y) = f(y,D = 0|Z = 0),

δ1 =

∫
max(p1(y), q1(y))dy, δ0 =

∫
max(p0(y), q0(y))dy,

λ1 =

∫
min(p1(y), q1(y))dy, λ0 =

∫
min(p0(y), q0(y))dy.

Moreover, Kitagawa (2009) defines the α-th left- and right- trimming of a nonnegative integrable

function g : Y 7→ R. Let qltα = inf
{
t :
∫

[yLB ,t]
g(y)dy ≥ α

}
and qrtα = inf

{
t :
∫

[t,yUB ]
g(y)dy ≥ α

}
.

The α-th left- and right- trimming functions are

(g)ltα(y) = g(y) · I{y > qltα}+

(∫
[yLB ,qltα ]

g(y)dy − α

)
· I{y = qltα}, (A.20)

(g)rtα (y) = g(y) · I{y < qrtα }+

(∫
[qrtα ,y

UB ]

g(y)dy − α

)
· I{y = qrtα }. (A.21)

Notice that those functions degenerate to zero for α ≥
∫
g(y)dy, sum up to g(y) and integrate to∫

g(y)dy − α.
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Given this notation Kitagawa’s bounds on ∆ can be written in a compact way as

∆UB
Ki = min(1− δ1, λ0) · yUB +

∫
y1 · (max(p1(y), q1(y)) + (min(p1(y), q1(y)))ltmin(1−δ1,λ0))dy

− min(1− δ0, λ1) · yLB −
∫
y0 · (max(p0(y), q0(y)) + (min(p0(y), q0(y)))rtmin(1−δ0,λ1))dy,

∆LB
Ki = min(1− δ1, λ0) · yLB +

∫
y1 · (max(p1(y), q1(y)) + (min(p1(y), q1(y)))rtmin(1−δ1,λ0))dy

− min(1− δ0, λ1) · yUB −
∫
y0 · (max(p0(y), q0(y)) + (min(p0(y), q0(y)))ltmin(1−δ0,λ1))dy.

For the comparison we will only consider the upper bound, a symmetric argument holds for the

lower bound. For the same reason we only consider the case of P1|1 > P1|0. Our upper bound on ∆

can be rewritten as

∆UB = P0|1 · yUB +

∫
y1 · (max(p1(y), q1(y)) + min(p1(y), q1(y)))dy

− P1|0 ·max(Ȳ1,1(min |q11,0
1,1 ), Ȳ0,1)

− P1|0 · yLB −
∫
y0 · (max(p0(y), q0(y)) + min(p0(y), q0(y)))dy

+ P0|1 ·min(Ȳ0,0(max |q00,0
0,0 ), Ȳ1,0).

Therefore, the difference between Kitagawa’s upper bound and ours is

∆UB −∆UB
Ki = (P0|1 −min(1− δ1, λ0)) · yUB +

∫
y1 ·min(p1(y), q1(y))dy (A.22)

−
∫
y1 · (min(p1(y), q1(y)))ltmin(1−δ1,λ0)dy − P1|0 ·max(Ȳ1,1(min |q11,0

1,1 ), Ȳ0,1)

− (P1|0 −min(1− δ0, λ1)) · yLB −
∫
y0 ·min(p0(y), q0(y))dy

+

∫
y0 · (min(p0(y), q0(y)))rtmin(1−δ0,λ1)dy + P0|1 ·min(Ȳ0,0(max |q00,0

0,0 ), Ȳ1,0) ≥ 0

We now show that this inequality is always satisfied. First of all, we demonstrate that

(P0|1 −min(1− δ1, λ0)) · yUB − (P1|0 −min(1− δ0, λ1)) · yLB ≥ 0

In order to do so, it is sufficient to show that P1|0 − min(1 − δ0, λ1) = P0|1 − min(1 − δ1, λ0) ≥ 0

Kitagawa (2009) proves that P1|1+P1|0 = δ1+λ1 and similarly, one can show that P0|0+P0|1 = δ0+λ0.

Thus, P1|0−λ1 = P0|1− (1−δ1) and P0|1−λ0 = P1|0− (1−δ0). Moreover, from δ1 +λ1 +δ0 +λ0 = 2,

we have (1 − δ1) − λ0 = λ1 − (1 + δ0), which implies (1 − δ1) > λ0 ⇒ λ1 > (1 − δ0) and (1 − δ1) <

λ0 ⇒ λ1 < (1− δ0). Therefore, P1|0 −min(1− δ0, λ1) = P0|1 −min(1− δ1, λ0). Finally P1|0 ≥ λ1 by

construction and P1|0 ≥ (1− δ0), since P0|1 ≥ λ0 by construction and P0|1 − λ0 = P1|0 − (1− δ0).
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To end the proof, we need to show that

(∫
y1 ·min(p1(y), q1(y))dy −

∫
y1 · (min(p1(y), q1(y)))ltmin(1−δ1,λ0)dy

)
− P1|0 ·max(Ȳ1,1(min |q11,0

1,1 ), Ȳ0,1) ≥ 0,

P0|1 ·min(Ȳ0,0(max |q00,0
0,0 ), Ȳ1,0)−

(∫
y0 ·min(p0(y), q0(y))dy −

∫
y0 · (min(p0(y), q0(y)))rtmin(1−δ0,λ1)dy

)
≥ 0.

From the results of Kitagawa it follows that
∫
y1·min(p1(y), q1(y))dy−

∫
y1·(min(p1(y), q1(y)))ltmin(1−δ1,λ0)dy

is the upper bound for E(Y,D = 1|T = 11) while from our results it follows that P1|0 ·

max(Ȳ1,1(min |q11,0
1,1 ), Ȳ0,1) is the lower bound on the same parameter, therefore the first inequality is

always satisfied. Similarly,
∫
y0 · min(p0(y), q0(y))dy −

∫
y0 · (min(p0(y), q0(y)))rtmin(1−δ0,λ1)dy is the

lower bound for E(Y,D = 0|T = 00), while P0|1 · min(Ȳ0,0(max |q00,0
0,0 ), Ȳ1,0) is the upper bound on

the same parameter. This ends the proof.

An important result of Kitagawa (2009) is that under full independence of the instrument and

the potential outcomes/treatment states, monotonicity does not hold if one or both of the following

inequalities are violated for some y ∈ Y:

p1(y) ≥ q1(y), q0(y) ≥ p0(y) ∀y ∈ Y. (A.23)

However, under the satisfaction of (A.23), Kitagawa’s bounds are equivalent to Manski’s (1990), which

are in turn equivalent to ours, because (A.23) implies the satisfaction of Assumptions 2 and 3 (mean

independence within strata and monotonicity). Therefore, only if (A.23) is violated, the inequality in

(A.22) becomes strict (and turns into an equality otherwise).

A.1.8 Order of the bounds on the treated, non-treated and the entire

population w.r.t. their tightness

First of all, note that ∆UB
D=1 > ∆UB

D=0 immediately implies that ∆LB
D=1 < ∆LB

D=0 since the bounds are

symmetric. Moreover,

∆UB
D=1 −∆UB = ∆UB

D=1 − Pr(D = 1) ·∆UB
D=1 − (1− Pr(D = 1)) ·∆UB

D=0,

= Pr(D = 0) · (∆UB
D=1 −∆UB

D=0),

and

∆UB
D=0 −∆UB = ∆UB

D=0 − Pr(D = 0) ·∆UB
D=0 − (1− Pr(D = 0)) ·∆UB

D=1,

= Pr(D = 1) · (∆UB
D=0 −∆UB

D=1).
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Therefore, ∆UB
D=1 < ∆UB

D=0 implies ∆UB
D=1 < ∆UB < ∆UB

D=0 and ∆LB
D=0 < ∆LB < ∆LB

D=1. The converse

is true if ∆UB
D=1 > ∆UB

D=0. This ends the proof.

A.2 Monotonicity

A.2.1 Proof of the sharpness of the bounds for the always takers

Under monotonicity and Assumption 2, E(Y (1)|T = 11) is identified by Ȳ0,1. Since monotonicity

does not impose any restrictions on the distribution of Y (0)|T = 11, E(Y (1)|T = 11)UB = yUB and

E(Y (1)|T = 11)LB = yLB . This implies that ∆UB
11 and ∆LB

11 are the sharp upper and lower bounds

of ∆11.

A.2.2 Proof of the sharpness of the bounds for the never takers

Under monotonicity and Assumption 2, E(Y (0)|T = 00) is identified by Ȳ1,0. Since monotonicity

does not impose any restrictions on the distribution of Y (1)|T = 00, E(Y (0)|T = 11)UB = yUB and

E(Y (0)|T = 11)LB = yLB . This implies that ∆UB
00 and ∆LB

00 are the sharp upper and lower bounds

of ∆00.

A.2.3 Proof of the sharpness of the bounds on the mean potential out-

comes E(Y (1)), E(Y (0))

Under monotonicity, π11 = P1|0, π00 = P0|1, E(Y (1)|T = 11) = Ȳ0,1 and E(Y (0)|T = 00) = Ȳ1,0, so

that equations (A.16) and (A.17) simplify to

E(Y (0)) = P1|0 · E(Y (0)|T = 11) + P0|0 · Ȳ0,0,

E(Y (1)) = P0|1 · E(Y (1)|T = 00) + P1|1 · Ȳ1,1.

The only unidentified element of E(Y (0)) is E(Y (0)|T = 11). Therefore, its sharp upper and lower

bounds are obtained by substituting E(Y (0)|T = 11) with E(Y (0)|T = 11)UB = yUB and E(Y (0)|T =

11)LB = yLB , respectively. Similarly, the sharp bounds upper and lower bounds on E(Y (1)) are

obtained by substituting E(Y (1)|T = 11) with E(Y (1)|T = 11)UB = yUB and E(Y (1)|T = 11)LB =

yLB , respectively.
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A.3 Mean dominance

A.3.1 Identified set of the proportion of defiers under mean dominance

based on linear programming

Assumption 4 together with Assumption 2 (i) can be rewritten as

E[Y (d)|T = 10, Z = 0] ≥ E[Y (d)|T = t, Z = 0] ∀d ∈ {0, 1}, t ∈ {11, 00},

and the corresponding additional restrictions on h (recall that htz(yi, yj) = Pr(Y (1) = yi, Y (0) =

yj |T = t, Z = z)) are

k∑
i=1

k∑
j=1

yih
10
0 (yi, yj) ≥

k∑
i=1

k∑
j=1

yih
11
0 (yi, yj), (A.24)

k∑
i=1

k∑
j=1

yih
10
0 (yi, yj) ≥

k∑
i=1

k∑
j=1

yih
00
0 (yi, yj),

k∑
i=1

k∑
j=1

yjh
10
0 (yi, yj) ≥

k∑
i=1

k∑
j=1

yjh
11
0 (yi, yj),

k∑
i=1

k∑
j=1

yjh
10
0 (yi, yj) ≥

k∑
i=1

k∑
j=1

yjh
00
0 (yi, yj).

If there exists a solution to (A.4)− (A.6) and (A.24) for a given value of the defier share π01, then

such a π01 is admissible. Note that the sharp identified set for the share of defiers under Assumptions

1, 2, and 4 is an interval because the mechanism of the proof of Lemma 1 applies.

A.3.2 Identified set of the proportion of defiers under mean dominance

based on moment inequalities

The inequalities are similar to (A.15), with the only difference that Ȳ1,1(max |q11
1,1) is replaced by Ȳ1,1

and Ȳ0,0(max |q00
0,0) is replaced by Ȳ0,0.

Ȳ0,1(min |q11
0,1) ≤ Ȳ1,1,

Ȳ1,1(min |q11
1,1) ≤ Ȳ0,1(max |q11

0,1),

Ȳ1,0(min |q00
1,0) ≤ Ȳ0,0, (A.25)

Ȳ0,0(min |q00
0,0) ≤ Ȳ1,0(max |q00

1,0).

The proof for necessity and sufficiency of (A.25) for the share of defiers π01 to be included in P∗∗

56



is analogous to the one presented in Appendix A.1.3. A similar argument as in Appendix A.1.3 also

applies to prove that πmax
01 = min{P1|0, P0|1} ∈ P∗∗.

A.3.3 Bounds on the ATEs under mean dominance only

Under mean dominance, the ATE on the compliers is bounded by

∆UB
10 = sup

π01∈P∗∗

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01
(A.26)

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)

P1|1 − P1|0 + π01

]
,

∆LB
10 = inf

π01∈P∗∗

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·min

(
Ȳ1,1, Ȳ0,1(max |q11

0,1)
)

P1|1 − P1|0 + π01

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01

]
.

The intuition of this result is that the compliers’ mean potential outcome under treatment cannot be

lower than that of the always takers, while under non-treatment it cannot be lower than the one of

the never takers. Therefore, we now have the minimization problems min
(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)

and

min
(
Ȳ1,1, Ȳ0,1(max |q11

0,1)
)
, as Ȳ0,0 is the lower bound on the compliers’ mean potential outcome in the

mixed population with the defiers and Ȳ1,1 in the mixed group with the always takers. The sharpness

of these bounds and all other bounds under mean dominance proposed below follows from the fact

that they are special cases of the bounds derived in Section 3.1 and that we can apply Lemma 2 in

Appendix A.3 to formally prove their sharpness.

The bounds for the defiers are the same as in Section 3.1, since we do not impose any mean

dominance assumption w.r.t. the potential outcomes of this population. The bounds for the ATEs

on the always takers and never takers are, respectively,

∆UB
11 = min

(
Ȳ1,1, Ȳ0,1(max |q11,πmax

01
0,1 )

)
− yLB , (A.27)

∆LB
11 = inf

π01∈P∗∗

[
max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

−
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01

]
,

and

∆UB
00 = sup

π01∈P∗∗

[
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01
(A.28)

− max
(
Ȳ1,0(min |q00

1,0), Ȳ0,0(min |q00
0,0)
)]
,

∆LB
00 = yLB −min

(
Ȳ1,0(max |q00,πmax

01
1,0 ), Ȳ0,0

)
.
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Ȳ1,1, Ȳ0,0 are now the upper bounds on the mean potential outcome under treatment and the mean

potential outcome under non-treatment for the always takers and the never takers, respectively.

Moreover, mean dominance implies that the always takers’ upper bound under non-treatment cannot

be higher than the compliers’ upper bound under non-treatment and that the never takers’ upper

bound under treatment cannot be higher than the compliers’ upper bound under treatment. This is

a considerable improvement over the bounds only invoking mean independence within strata, as it

allows us to replace yUB by observed quantities. It, however, requires optimization over all possible

values of π01.

Under mean dominance the sharp bounds on E(Y (1)) and E(Y (0)) become

E(Y (0))UB = sup
π01∈P∗∗

[
(P1|0 − π01) ·

P1|1 · Ȳ1,1 − (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

+ P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0

]
,

E(Y (0))LB = inf
π01∈P∗∗

[
(P1|0 − π01) · yLB − (P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)

+ P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0

]
,

and

E(Y (1))UB = sup
π01∈P∗∗

[
(P0|1 − π01) ·

P0|0 · Ȳ0,0 − (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+ P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1

]
,

E(Y (1))LB = inf
π01∈P∗∗

[
(P0|1 − π01) · yLB − (P1|0 − π01) ·min

(
Ȳ1,1, Ȳ0,1(max |q11

0,1)
)

+ P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1

]
.

Therefore, the bounds on the ATEs on the treated, non-treated, and the entire population corre-

spond to

∆UB
D=1 = E(Y |D = 1)− inf

π01∈P∗∗

[
(P1|0 − π01) · yLB + Pr(Z = 1) · P0|0 · Ȳ0,0 + Pr(Z = 0) · P0|1 · Ȳ1,0

Pr(D = 1)
(A.29)

−
(P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)

Pr(D = 1)

]
,

∆LB
D=1 = E(Y |D = 1)− sup

π01∈P∗∗

 (P1|0 − π01) · P0|0·Ȳ0,0−(P0|1−π01)·max(Ȳ0,0(min |q000,0),Ȳ1,0(min |q001,0))
P1|1−P1|0+π01

Pr(D = 1)
(A.30)

+
Pr(Z = 1) · P0|0 · Ȳ0,0 + Pr(Z = 0) · P0|1 · Ȳ1,0

Pr(D = 1)
−

(P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

Pr(D = 1)

]
,
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∆UB
D=0 = sup

π01∈P∗∗

 (P0|1 − π01) · P1|1·Ȳ1,1−(P1|0−π01)·max(Ȳ1,1(min |q111,1),Ȳ0,1(min |q110,1))
P1|1−P1|0+π01

Pr(D = 0)
(A.31)

+
Pr(Z = 1) · P1|0 · Ȳ1,0 + Pr(Z = 0) · P1|1 · Ȳ1,1

Pr(D = 0)
−

(P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

Pr(D = 0)

]
− E(Y |D = 0),

∆LB
D=0 = inf

π01∈P∗∗

[
(P0|1 − π01) · yLB + Pr(Z = 1) · P1|0 · Ȳ1,0 + Pr(Z = 0) · P1|1 · Ȳ1,1

Pr(D = 0)
(A.32)

−
(P1|0 − π01) ·min

(
Ȳ1,1, Ȳ0,1(max |q11

0,1)
)

Pr(D = 0)

]
− E(Y |D = 0),

and

∆UB = sup
π01∈P∗∗

[
P1|0 · Ȳ0,1 − (P1|0 − π01) · yLB + P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+
(
P0|1 − π01) ·min

(
Ȳ0,0, Ȳ1,0(max |q00

1,0)
)
− P0|1 · Ȳ1,0 (A.33)

+ (P0|1 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01
− P0|0 · Ȳ0,0

]
,

∆LB = inf
π01∈P∗∗

[
P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1 (A.34)

− (P1|0 − π01) ·
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01

− (P1|0 − π01) ·min
(
Ȳ1,1, Ȳ0,1(max |q11

0,1)
)

+ (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

− P0|1 · Ȳ1,0 + (P0|1 − π01) · yLB − P0|0 · Ȳ0,0

]
.

Note that in contrast to the bounds of Section 3.1, mean dominance requires optimizing w.r.t. π01,

because any of the previously used yUB has been substituted by the upper bounds on the mean

potential outcomes of the compliers.

Lemma 2 shows that under mean dominance, the upper bounds of E(Y (1)|Z = 1, T = 11) and

E(Y (0)|Z = 0, T = 00) are Ȳ1,1 and Ȳ0,0, respectively. Moreover, mean dominance implies that

E(Y (0)|T = 11) ≤ E(Y (0)|T = 10) and E(Y (1)|T = 00) ≤ E(Y (1)|T = 10), thus E(Y (0)|T =

11)UB ≤ E(Y (0)|T = 10)UB and E(Y (1)|T = 00)UB ≤ E(Y (1)|T = 10)UB . The bounds on the

ATEs within the four principal strata are special cases of the bounds derived in Section 3.1 under the

restrictions just mentioned. Therefore, all of them are sharp.

A.3.4 Proof of the sharpness of the bounds on the mean potential out-

comes E(Y (1)), E(Y (0))

The proofs for the lower bounds are very similar to the ones provided in Appendix A.1.5 (with the

only difference that Ȳ1,1(max |q11
1,1) is replaced by Ȳ1,1 and Ȳ0,0(max |q00

0,0) is replaced by Ȳ0,0 in the

definitions of densities {ht} and coefficients {α}) and therefore omitted. Hence, we only consider the
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upper bounds of E(Y (1)), E(Y (0)) for a given π01:

E(Y (0))UB(π01) = (P1|0 − π01) ·
P1|1 · Ȳ1,1 − (P1|0 − π01) ·max

(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

P1|1 − P1|0 + π01

− (P0|1 − π01) ·max
(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

+ P0|0 · Ȳ0,0 + P0|1 · Ȳ1,0,

and

E(Y (1))UB(π01) = (P0|1 − π01) ·
P0|0 · Ȳ0,0 − (P0|1 − π01) ·max

(
Ȳ0,0(min |q00

0,0), Ȳ1,0(min |q00
1,0)
)

P1|1 − P1|0 + π01

− (P1|0 − π01) ·max
(
Ȳ1,1(min |q11

1,1), Ȳ0,1(min |q11
0,1)
)

+ P1|0 · Ȳ0,1 + P1|1 · Ȳ1,1.

By assumption, E(Y (0)|T = 11)UB ≤ E(Y (0)|T = 10)UB =
P0|0·Ȳ0,0−(P0|1−π01)·max(Ȳ0,0(min |q000,0),Ȳ1,0(min |q001,0))

P1|1−P1|0+π01

and E(Y (1)|T = 00)UB ≤ E(Y (1)|T = 10)UB =
P0|0·Ȳ0,0−(P0|1−π01)·max(Ȳ0,0(min |q000,0),Ȳ1,0(min |q001,0))

P1|1−P1|0+π01
.

Therefore, the bounds are valid.

To show that they are sharp, we need to show that for T = 11, 10, 01, 00 and Z = 1, 0, there

exist distributions of T given Z and of (Y (1), Y (0)) given T and Z that are compatible with a

data generating process satisfying Assumptions 2 and 4 and implying E(Y (0)) = E(Y (0))UB and

E(Y (1)) = E(Y (1))UB .

We reconsider (A.10) and (A.11) and change the marginal distribution of h1
11 and h0

11 with respect

to y(0) by replacing I{y(0) = yUB} with the marginal distributions of hz10 with respect to y(0). We

also modify the marginal distribution of h1
00 and h0

00 with respect to y(1) by replacing I{y(1) = yUB}

by the marginal distributions of hz10 with respect to y(1).

This choice of Pr(T |Z) and {hzt } satisfies Assumption 2 by construction. Note that∫∫
y(0)h11 dy(1) dy(0) =

∫∫
y(0)h10 dy(1) dy(0) and

∫∫
y(1)h00 dy(1) dy(0) =

∫∫
y(1)h10 dy(1) dy(0)

imply E(Y (0)|T = 11) = E(Y (0)|T = 10) and E(Y (1)|T = 00) = E(Y (1)|T = 10). Therefore,

Assumption 4 is also satisfied. Since all equations in (A.12) are still valid because the marginal

distributions that we replaced do not affect restriction (A.12), this distributional choice is

compatible with the data generating process. In an analogous way as in A.1.5, it is easy to see that

the distributions imply E(Y (0)) = E(Y (0))UB and E(Y (1)) = E(Y (1))UB . This shows that the

provided bounds are sharp for a given value of π01. The sharp upper bounds over all admissible π01

are obtained by taking the supremum w.r.t. to π01. Because of the continuity of the bounds in π01

(see Appendix A.1.4) for a compact set P∗∗, the maximum is attained by the extreme value theorem.
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A.4 Monotonicity and mean dominance

A.4.1 Proof of the sharpness of the bounds for always takers

Mean dominance implies that E(Y (0)|T = 11) ≤ E(Y (0)|T = 10) =
P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0
. Thus,

E(Y (0)|T = 11)LB =
P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0
and ∆LB

11 is the sharp lower bound of ∆11.

A.4.2 Proof of the sharpness of the bounds for never takers

Mean dominance implies that E(Y (1)|T = 00) ≤ E(Y (1)|T = 10) =
P1|1·Ȳ1,1−P1|0·Ȳ0,1

P1|1−P1|0
. Thus,

E(Y (1)|T = 00)LB =
P1|1·Ȳ1,1−P1|0·Ȳ0,1

P1|1−P1|0
and ∆UB

00 is the sharp upper bound of ∆00.

A.4.3 Proof of the sharpness of the bounds on the mean potential out-

comes E(Y (1)), E(Y (0))

Mean dominance implies E(Y (0)|T = 11)LB =
P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0
, E(Y (1)|T = 00)LB =

P1|1·Ȳ1,1−P1|0·Ȳ0,1

P1|1−P1|0
. Monotonicity implies

E(Y (0)) = P1|0 · E(Y (0)|T = 11) + P0|0 · Ȳ0,0,

E(Y (1)) = P0|1 · E(Y (1)|T = 00) + P1|1 · Ȳ1,1.

Therefore,

E(Y (0))LB = P1|0 ·
P0|0 · Ȳ0,0 − P0|1 · Ȳ1,0

P1|1 − P1|0
+ P0|0 · Ȳ0,0,

E(Y (1))LB = P0|1 ·
P1|1 · Ȳ1,1 − P1|0 · Ȳ0,1

P1|1 − P1|0
+ P1|1 · Ȳ1,1,

are sharp.

A.5 Discrete outcomes

A.5.1 Identification

If the outcome Y is discrete, the bounds based on Proposition 4 in Horowitz and Manski (1995)

are generally not valid. This is due to the presence of ties in the outcome, i.e. the occurrence of

mass points with equal outcome values, which entails a non-unique quantile function such that a

particular outcome value is observed at several ranks. The quantile function is required to construct

(i) a distribution which is stochastically dominated by any feasible distribution that is consistent with

the identification region of some mixture component (i.e., stratum) of interest to determine the lower
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bound of its mean outcome and (ii) a distribution which stochastically dominates any distribution

consistent with the identification to determine the upper bound, respectively. In the presence of

discrete outcomes we have to replace the non-unique quantile function, which gives equal ranks to all

ties, by a modified version which accounts for ties.

To this end, we denote by Yz,d the outcome variable in the respective observed group and introduce

the following trimming functions which are similar to the ones proposed by Kitagawa (2009)

Trimmin,t
z,d =

I{Yz,d < F−1(qtz,d)} · Pr(Yz,d < F−1(qtz,d))

1− qtz,d
(A.35)

+
I{Yz,d = F−1(qtz,d)} ·

(
Pr(Yz,d ≥ F−1(qtz,d))− qtz,d

)
1− qtz,d

Trimmax,t
z,d =

I{Yz,d > F−1(1− qtz,d)} · Pr(Yz,d > F−1(1− qtz,d))
qtz,d

+
I{Yz,d = F−1(1− qtz,d)} ·

(
Pr(Yz,d ≤ F−1(1− qtz,d))− (1− qtz,d)

)
qtz,d

Let Y min,t
z,d = Yz,d · Trimmin,t

z,d and Y max,t
z,d = Yz,d · Trimmin,t

z,d . Since F
Y

min,t
z,d

(y) is stochastically

dominated by any feasible distribution consistent with the identification region and F
Y

max,t
z,d

(y)

stochastically dominates any feasible distribution consistent with the identification region, we can

define the lower and upper bounds of E(Y (d)|Z = z, T = t) as Ȳz,d(min |qtz,d) = E(Y min,t
z,d ) and

Ȳz,d(max |qtz,d) = E(Y max,t
z,d ), respectively.

A.6 Estimation

The trimming function can be easily estimated by its sample analog. A more intuitive and asymp-

totically equivalent estimator can be obtained as follows. Denote by nz,d the number of observations

with Z = z and D = d. Let Y
(1)
z,d , . . . , Y

(nz,d)

z,d be the order statistic of Yz,d which assigns increasing

ranks at the ties. E.g., if there are two observations i and j ∈ {1, ..., nz,d} with the same outcome

values y, the rank of the first one, denoted by the function rank(·), will be some integer i while the

rank of the second observation will be i+ 1. Define ˜qtz,d · nz,d and ˜nz,d − qtz,d · nz,d to be the integer

part of qtz,d · nz,d and nz,d − qtz,d · nz,d, respectively, if qtz,d · nz,d and nz,d − qtz,d · nz,d are larger than

1, while they are 1 otherwise.

The only difference with Section 4 is that the trimmed means are now estimated by

ˆ̄Yz,d(max |qtz,d) =

∑n
i=1 Yi · I{Di = d} · I{Zi = z} · I{rank(Yi) ≥ ˜nz,d − qtz,d · nz,d}∑n
i=1 I{Di = d} · I{Zi = z} · I{rank(Yi) ≥ ˜nz,d − qtz,d · nz,d}

,

ˆ̄Yz,d(min |qtz,d) =

∑n
i=1 Yi · I{Di = d} · I{Zi = z} · I{rank(Yi) ≤ ˜qtz,d · nz,d}∑n
i=1 I{Di = d} · I{Zi = z} · I{rank(Yi) ≤ ˜qtz,d · nz,d}

.
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Since we just replace the quantile function by the modified rank function, this only results in using

a different indicator function when computing the trimmed means. Note that if Y is continuous,

defining the bounds in terms of the modified rank function is equivalent to defining them in terms of

the regular quantile function, as each outcome value has a unique rank in this case. Therefore, the

two approaches converge to each other as the number of support points of Y goes to infinity.

A.7 Inference based on Chernozhukov, Lee, and Rosen (2009)

Recall from Section 4 that ∆LB
t (π01, v), ∆UB

t (π01, v) are the conditional bounds on the ATE in some

subpopulation t given π01 and v20 and that the identification region of ∆t (the unconditional ATE in

the subpopulation) is obtained by optimizing over admissible values of π01∈P and v ∈ V = {1, 2, 3, 4}:

inf
π01∈P

{max
v∈V

[∆LB
t (π01, v)]} ≤ ∆t ≤ sup

π01∈P
{min
v∈V

[∆UB
t (π01, v)]},

We subsequently discuss the estimation of the upper bound along with its confidence region (the

proceeding for the lower bound is analogous) under Assumptions 1 and 2 or 1, 2, and 4, where non-

differentiability complicates inference. We use the procedure of Chernozhukov et al. (2013) to obtain

a half-median-unbiased estimator of minv∈V [∆UB(π01, v)] conditional on π01, see also the application

of this method in Chen and Flores (2012).

The main idea is that instead of taking the minimum of the estimated upper bounds ∆̂UB
t (π01, v)

directly, one uses the following precision adjusted version, denoted by ∆̃UB
t (π01, p), which consists of

the initial estimate plus s(v), a measure of the precision of ∆̂UB
t (π01, v), times an appropriate critical

value k(p):

∆̃UB
t (π01, p) = min

v∈V
[∆̂UB

t (π01, v) + k(p) · s(v)].

Define ∆UB
t (π01) to be the four dimensional vector with elements ∆UB

t (π01, v), v = 1, 2, 3, 4. As

outlined below, k(p) is a function of the sample size and the estimated variance-covariance matrix of

√
n(∆̂UB

t (π01) −∆UB
t (π01)), denoted by Ω̂. For p = 1

2
, the estimator ∆̃UB

t (π01, p) is half-median-

unbiased, which implies that the estimate of the upper bound exceeds its true value with probability

at least one half asymptotically. Finally, by taking the supremum of ∆̃UB
t (π01, p) over π01, we obtain

a conservative estimate for ∆UB
t .

The following algorithm briefly sketches the estimation of ∆UB
t along with its upper confidence

band based on the precision adjustment.

20v =


1 if z = 1, z′ = 1
2 if z = 1, z′ = 0
3 if z = 0, z′ = 1
4 if z = 0, z′ = 0

.
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1. Estimate the vector ∆̂UB
t (π01) by its sample analog. Estimate the variance-covariance matrix

Ω̂ by bootstrapping B times.

2. Denoting by ĝ(v)> the v-th row of Ω̂
1
2 , estimate ŝ(v) = ‖ĝ(v)‖√

n
, where ‖·‖ is the Euclidean norm.

3. Simulate R draws, H1, . . . , HR from a N (0, I4), where 0 and I4 are the null vector and the

identity matrix of dimension 4, respectively.

4. Let H∗r (v) = ĝ(v)>Zr/ ‖ĝ(v)‖ for r = 1, . . . , R.

5. Let k̃(c) be the c-th quantile of minv∈V H
∗
r (v), r = 1, . . . , R, where c = 1− 0.1

log(n)
.

6. Compute the set estimator V̂ = {v ∈ V : ∆̂UB(π01, v) ≤ minv′∈V {[∆̂UB
t (π01, v

′) + k̃(c) · ŝ(v′)] +

2 · k̃(c) · ŝ(v′)}}.

7. Estimate the critical value k̂(p) by the p-th quantile of minv∈V̂ H
∗
r (v), r = 1, . . . , R.

8. For half-median-unbiasedness, set p = 1
2

and compute ∆̃UB
t (π01,

1
2
) = minv∈V [∆̂UB

t (π01, v) +

k̂( 1
2
) · ŝ(v)].

9. Estimate the upper bound ∆UB
t by ∆̂UB

t = supπ01∈P [∆̃UB
t (π01,

1
2
)].

10. To obtain the upper confidence band, estimate the half-median-unbiased lower bound given π01,

∆̃LB
t (π01,

1
2
).

11. Let Γ = max(0, ∆̃UB
t (π01,

1
2
)−∆̃LB

t (π01,
1
2
)), ρ = max(∆̃UB

t (π01,
3
4
)−∆̃UB

t (π01,
1
4
), ∆̃LB

t (π01,
3
4
)−

∆̃LB
t (π01,

1
4
)) and τ = (ρ · log(n))−1. Compute â = 1 − Φ(τ · Γ) · α, where α is the chosen

confidence level.

12. The upper confidence band for the estimate of ∆UB
t is obtained by supπ01∈P [∆̃UB

t (π01, â)].

A.8 Bounding the ATEs on the treated with Z = 1 and Z = 0

In the subsequent sections21, we derive bounds on ∆D=1,Z=1 = E(Y (1) − Y (0)|D = 1, Z = 1), the

ATE among those treated receiving the instrument (consisting of always takers and compliers), and

on ∆D=1,Z=0 = E(Y (1)−Y (0)|D = 1, Z = 0), the ATE among those treated not receiving the instru-

ment (consisting of defiers and never takers) under various assumptions. These parameters appear

interesting in the context of experimentally evaluated encouragement designs aiming at increasing

treatment participation (e.g. by advertisement). ∆D=1,Z=1 then gives the effect on the treated that

have been encouraged (Z = 1) to take the treatment, whereas ∆D=1,Z=0 is the impact on those who

are treated despite of not being encouraged (Z = 0). This allows assessing whether/how the ATE on

the treated differs with and without encouragement (however, bearing in mind that the treated are

not identical under Z = 1 and Z = 0), which may be relevant for deciding whether an encouragement

should be provided to everybody or nobody in some population of interest.

21We would like to thank an anonymous referee for suggesting those parameters.
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A.8.1 Mean independence within principal strata without further

assumptions

To derive bounds on ∆D=1,Z=1 = E(Y (1)− Y (0)|D = 1, Z = 1), note that E(Y (1)|D = 1, Z = 1) =

E(Y |D = 1, Z = 1) = Ȳ1,1. Therefore, we only need to bound

E(Y (0)|D = 1, Z = 1) =
π11

P1|1
· E(Y (0)|T = 11) +

π10

P1|0
· E(Y (0)|T = 10)

=
(P1|0 − π01) · E(Y (0)|T = 11) + P0|0 · Ȳ0,0 − (P0|1 − π01) · E(Y (0)|T = 00)

P1|1
.

The sharp bounds on ∆D=1,Z=1 are given by

∆UB
D=1,Z=1 = Ȳ1,1 −

(P1|0 − πmin
01 ) · yLB + P0|0 · Ȳ0,0

P1|1
(A.36)

+
(P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
P1|1

,

∆LB
D=1,Z=1 = Ȳ1,1 −

(P1|0 − πmin
01 ) · yUB + P0|0 · Ȳ0,0

P1|1
(A.37)

+
(P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
P1|1

.

To see this, note that (A.10) and (A.11) imply ∆D=1,Z=1 = ∆UB
D=1,Z=1(π01). In an analogous manner

as in Appendix A.1.5, one can show that supπ01∈P ∆UB
D=1,Z=1(π01) = ∆UB

D=1,Z=1(πmin
01 ) .

Concerning ∆D=1,Z=0 = E(Y (1) − Y (0)|D = 1, Z = 0), note that E(Y (1)|D = 1, Z = 0) =

E(Y |D = 1, Z = 0) = Ȳ0,1, so that we only need to bound

E(Y (0)|D = 1, Z = 0) =
π11

P1|0
· E(Y (0)|T = 11) +

π01

P1|0
· E(Y (0)|T = 01)

=
(P1|0 − π01) · E(Y (0)|T = 11) + P0|1 · Ȳ1,0 − (P0|1 − π01) · E(Y (0)|T = 00)

P1|0
.

In the same way as for ∆UB
D=1,Z=1, one can show that the sharp bounds on ∆D=1,Z=1 are given by

∆UB
D=1,Z=0 = Ȳ0,1 −

(P1|0 − πmin
01 ) · yLB + P0|1 · Ȳ0,1

P1|0
(A.38)

+
(P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
P1|0

,

∆LB
D=1,Z=0 = Ȳ0,1 −

(P1|0 − πmin
01 ) · yUB + P0|1 · Ȳ1,0

P1|0
(A.39)

+
(P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
P1|0

.
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A.8.2 Monotonicity

Under monotonicity, ∆D=1,Z=0 = ∆11 because defiers do not exist. Concerning ∆D=1,Z=1, π01 = 0

and E(Y (0)|T = 00) = Ȳ1,0 imply that the bounds simplify to

∆UB
D=1,Z=1 =

P1|1 · Ȳ1,1 + P0|1 · Ȳ1,0 − P1|0 · yLB − P0|0 · Ȳ0,0

P1|1
, (A.40)

∆LB
D=1,Z=1 =

P1|1 · Ȳ1,1 + P0|1 · Ȳ1,0 − P1|0 · yUB − P0|0 · Ȳ0,0

P1|1
. (A.41)

Sharpness follows immediately.

A.8.3 Mean dominance

Using a similar argument as the one used for the bounds under Assumption 2 alone, one can show

that the following bounds are sharp.

∆UB
D=1,Z=1 = sup

π01∈P

[
Ȳ1,1 −

(P1|0 − πmin
01 ) · yLB + P0|0 · Ȳ0,0

P1|1
(A.42)

+
(P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
P1|1

 ,
∆LB
D=1,Z=1 = inf

π01∈P

[
Ȳ1,1 −

(P1|0 − πmin
01 ) · yUB + P0|0 · Ȳ0,0

P1|1
(A.43)

+
(P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
P1|1

 .

∆UB
D=1,Z=0 = sup

π01∈P

[
Ȳ0,1 −

(P1|0 − πmin
01 ) · yLB + P0|1 · Ȳ0,1

P1|0
(A.44)

+
(P0|1 − πmin

01 ) ·min
(
Ȳ0,0(max |q00,πmin

01
0,0 ), Ȳ1,0(max |q00,πmin

01
1,0 )

)
P1|0

 ,
∆LB
D=1,Z=0 = inf

π01∈P

[
Ȳ0,1 −

(P1|0 − πmin
01 ) · yUB + P0|1 · Ȳ1,0

P1|0
(A.45)

+
(P0|1 − πmin

01 ) ·max
(
Ȳ0,0(min |q00,πmin

01
0,0 ), Ȳ1,0(min |q00,πmin

01
1,0 )

)
P1|0

 .
A.8.4 Monotonicity and mean dominance

Under both monotonicity and mean dominance, ∆D=1,Z=0 = ∆11 and ∆UB
D=1,Z=1 are the same as

under monotonicity alone. Concerning ∆LB
D=1,Z=1, note that E(Y (0)|T = 11)UB ≤ E(Y (0)|T = 10) =
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P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0
. Therefore,

∆LB
D=1,Z=1 =

P1|1 · Ȳ1,1 + P0|1 · Ȳ1,0 − P1|0 ·
P0|0·Ȳ0,0−P0|1·Ȳ1,0

P1|1−P1|0
− P0|0 · Ȳ0,0

P1|1
. (A.46)

Sharpness follows immediately.
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