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This paper

Estimating ATEs with outcome attrition/sample selection
based on

double machine learning
under

selection on observables or instrumental variable assumptions



Introduction

Treatment evaluation under sample selection

Examples:
Returns to education: wages are only observed for working individuals.
Effect of educational interventions (like vouchers for private schools) on
college admissions tests: students may non-randomly abstain from the
test.

Typically assumed: selection on observables, see e.g. Imbens (2004).
Double machine learning (DML, see Chernozhukov et al. 2018) controls
for crucial confounders among potentially many covariates in a
data-driven way by machine learning.



Treatment is not random.

Observed covariates make the treatment ”as good as random”.
Selection is not random.
(a) Observed covariates make the selection ”as good as random”.
or
(b) There is an instrument for selection.
Large number of covariates?
We make use of ”double machine learning” framework.
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Contribution
DML for discrete treatments under outcome attrition.

Static confounding:
selection-on-observables assumption for the treatment
selection-on-observables or instrumental variable (IV) assumptions for
outcome attrition

Dynamic confounding:
sequential selection-on-observables assumption for the treatment and
attrition
(treatment may affect confounders of attrition/outcome)

We derive doubly robust and efficient score functions (see Robins et al.
1994) for treatment evaluation and show that they satisfy the
conditions of DML framework.
→

√
n-consistency normality of treatment effect estimation when using

machine learners for (first-step) estimation of outcome, selection, and
treatment models that converge with rate n−

1
4 .
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Previous literature Literature

Notation

D: Treatment.

Y : Outcome.

S: Selection indicator.

X : Covariates.

Y (d): (Potential) outcome under treatment d ∈ {0,1, ...,Q}.



Identification (MAR)
Identification under MAR (causal graphs):

D

S

X

Y



Identification under MAR

Assumption 1 (conditional independence of the treatment):
Y (d)⊥D|X = x

Assumption 2 (conditional independence of selection):
Y⊥S|D = d ,X = x

Assumption 3 (common support):
(a) Pr(D = d |X = x)> 0 and (b) Pr(S = 1|D = d ,X = x)> 0



Identification under MAR (DR)
Identification based on the efficient influence function:

E [Y (d)] = E
[
ψd

]
, where

ψd =
I{D = d} ·S · [Y −µ(d ,1,X)]

pd(X) ·π(d ,X)
+µ(d ,1,X). (1)

where nuisance parameters:

µ(D,S,X) = E[Y |D,S,X ]

pd(X) = Pr(D = d |X)

π(D,X) = Pr(S = 1|D,X)



Identification (based on IV)
Identification based on IV (causal graphs):
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Details



Identification (dynamic confounding)
Sequential conditional independence (graph):

D

X S

M

Y

Details



Double machine learning (1)

X are high-dimensional, the nuisance parameters µ,pd ,π can be
estimated with ML algorithms
ML gives biased estimations due to bias-variance trade-off
(regularization bias).
Treatment effect estimation based sample analogs of efficient score
functions is quite robust to regularization bias
Neyman-orthogonality - ψd is locally insensitive to mild deviations of
µ,pd ,π from the true functions µ0,pd0,π0



Double machine learning (2)
W

Step 1

W C
k

Wk

µ̂(D,1,X)

p̂d(X)

π̂(D,X)

Step 2

Wk ψ̂k
d ,i

Step 3

ψ̂d = 1
n ∑

K
k=1 ∑

nk
i=1 ψ̂k

d ,i
Step 4
Algorithm 1



Regularity conditions

Assumption 10 (regularity conditions and quality of plug-in parameter
estimates):

Details

Satisfied if each nuisance estimator converges at least with rate n−
1
4 to

its true value.
Can be achieved by common machine learning algorithms like lasso,
random forests, neural nets, and boosting.



Root-n consistency

⇒ Treatment effect estimation is
√

n-consistent and asymptotically
normal.
Asymptotic variance is not affected by machine learning.

Theorem 1
Under Assumptions 1-3 and 10, it holds for estimating ψd0 = E [Y (d)] based
on Algorithm 1:√

n
(

ψ̂d −ψd0

)
→ N(0,σ2

ψd
), where σ2

ψd
= E [(ψd −ψd0)

2].



Simulation study

Data generating process:

Y = D+X ′
β +U with Y being observed if S = 1,

S = I{D+ γZ +X ′
β +V > 0}, D = I{X ′

β +W > 0},
X ∼ N(0,σ2

X ), Z ∼ N(0,1), (U,V )∼ N(0,σ2
U,V ), W ∼ N(0,1).

Details on simulation



Application: Job Corps experimental study

Job Corps offers vocational training and academic classroom
instruction for disadvantaged individuals aged 16 to 24
Currently about 50,000 participants every year.
Sample comes from the Job Corps experimental study conducted in
mid-90’s, see Schochet et all (2008): 11313 young individuals with
completed interviews 4 years after randomization (6828 assigned to
Job Corps, 4485 randomized out).
Outcome Y is hourly wage in last week of first year or four years after
randomization, observed conditional on employment S.
Treatment D is participation in academic or vocational training in the
first year after randomization among those randomized in.



Application
Focussing on female subsample randomized into Job Corps.
Hundreds of baseline covariates X (socioeconomic vars, labor market
history, crime, health...).
Instrument Z : number of young children in the household at baseline.
→ DML IV (Theorem 3) to assess ATE on hourly wage at the end of first
year.
Hundreds of intermediate covariates M measured after one year.
→ DML under sequential selection on observables (Theorem 4) to
assess ATE on hourly wage after four years.
Random forests for nuisance parameter estimation and 3-fold
cross-validation.



Application

Evaluation sample:

Table: Treatment distribution

treatment observations
randomized out of JC 1698
controls (no training) 200

academic training 830
vocational training 843



Application
Results:

Table: ATE estimates

D = 1 D = 0 ATE se p-value
Theorem 1 (MAR)

academic no training -0.170 0.253 0.501
vocational no training -0.519 0.405 0.199

Theorem 3 (IV)
academic no training -0.192 0.174 0.705
vocational no training -0.537 0.404 0.199

Theorem 4 (sequential)
academic no training 0.170 0.117 0.147
vocational no training 0.442 0.096 0.000



Conclusion

Evaluation of average treatment effects in the presence of sample
selection or outcome attrition based on double machine learning.
Proposition of doubly robust and Neyman-orhtogonal estimators that
are

√
n-consistent and asymptotically normal under specific regularity

conditions.
Simulation study and application to Job Corps program.
In causalweight package for R by Bodory and Huber (2018).



Thank you for your attention.
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Double selection (static, MAR or IV): Huber (2012, 2014) using inverse
probability weighting (not DR). Back



Identification based on IV (assumptions)

Assumption 4 (Instrument for selection):
(a) E [Z ·S|D,X ] ̸= 0,

Y (d ,z) = Y (d), and
Y⊥Z |D = d ,X = x

(b) S = I{V ≤ χ(D,X ,Z )},
(c) V⊥(D,Z )|X .

Assumption 5 (common support):
Pr(D = d |X = x ,Π = π)> 0,
where

Π= π(D,X ,Z ) = Pr(S = 1|D,X ,Z ).



Identification based on IV (assumptions)

Assumption 6 (conditional effect homogeneity):
E [Y (d)−Y (d ′)|S = 1,X = x ,V = v ] = E [Y (d)−Y (d ′)|X = x ,V = v ]

Effect homogeneity is satisfied if unobservables in the outcome
equation are additive separable.

Assumption 7 (common support):
π(d ,x ,z)> 0



Identification based on IV (DR):
Under Assumptions 1, 4, and 5:

E [Y (d)|S = 1] = E
[
φd ,S=1|S = 1

]
, where

φd ,S=1 =
I{D = d} · [Y −µ(d ,1,X ,Π)]

pd(X ,Π)
+µ(d ,1,X ,Π).

Under Assumptions 1, 4, 5, 6, and 7:

∆ = E
[
φd −φd ′

]
, where

φd =
I{D = d} ·S · [Y −µ(d ,1,X ,Π)]

pd(X ,Π) ·π(d ,X ,Z )
+µ(d ,1,X ,Π). (2)

pd(X ,Π) = Pr(D = d |X ,Π)

µ(D,S,X ,Π) = E[Y |D,S,X ,π(D,X ,Z )]

Back



Identification (dynamic confounding)

Assumption 8 (conditional independence of selection):
Y⊥S|D = d ,X = x ,M = m
Assumption 9 (common support):
(a) Pr(D = d |X = x)> 0 and (b) Pr(S = 1|D = d ,X = x ,M = m)> 0

M – post-treatment covariates.



Identification (dynamic confounding)
Under Assumptions 1, 8, and 9:

E [Y (d)] = E
[
θd

]
, where

θd =
I{D = d} ·S · [Y −µ(d ,1,X ,M)]

pd(X) ·π(d ,X ,M)

+
I{D = d} · [µ(d ,1,X ,M)−ν(d ,1,X)]

pd(X)
+ν(d ,1,X).

(3)

π(D,X ,M) = Pr(S = 1|D,X ,M)

µ(d ,1,X ,M) = E[Y |D = d ,S = 1,X ,M]

ν(d ,1,X) = E[E[Y |D = d ,S = 1,X ,M]|D = d ,X ]

Back



Double machine learning

Risk of overfitting bias when estimating nuisance terms µ,pd ,π in the
same sample as the treatment effect.

⇒ Cross-fitting: randomly split data to
(i) estimate the model parameters of nuisance terms in one subsample and
(ii) predict nuisance terms/estimate treatment effects in another subsample.

Subsamples are like independently drawn samples.
Switch roles of subsamples to avoid efficiency loss.



Double machine learning
Algorithm 1: Estimation of E [Y (d)] based on equation (1)

Let W = {Wi |1 ≤ i ≤ n} with Wi = (Yi ·Si ,Di ,Si ,Xi) for all i denote the set
of observations in an i.i.d. sample of size n.

1 Split W in K subsamples. For each subsample k , let nk denote its size, Wk the set of observations in the
sample and W C

k the complement set of all observations not in k .
2 For each k , use W C

k to estimate the model parameters of the plug-ins µ(D,S = 1,X), pd (X), π(D,X) in order
to predict these plug-ins in Wk , where the predictions are denoted by µ̂k (D,1,X), p̂k

d (X), and π̂k (D,X).
3 For each k , obtain an estimate of the score function (see ψd in (1)) for each observation i in Wk , denoted by

ψ̂k
d ,i :

ψ̂
k
d ,i =

I{Di = d} ·Si · [Yi − µ̂k (d ,1,Xi)]

p̂k
d (Xi) · π̂k (d ,Xi)

+ µ̂
k (d ,1,Xi). (4)

4 Average the estimated scores ψ̂k
d ,i over all observations across all K subsamples to obtain an estimate of

Ψd0 = E[Y (d)] in the total sample, denoted by Ψ̂d = 1/n ∑
K
k=1 ∑

nk
i=1 ψ̂k

d ,i .

Back



Double machine learning (2)
Regularity conditions and root-n consistency:
Assumption 10 (regularity conditions and quality of plug-in parameter
estimates):
For all probability laws P ∈ P, where P is the set of all possible probability
laws the following conditions hold for the random vector (Y ,D,S,X) for
d ∈ {0,1, ...,Q}:

(a) ∥Y∥q ≤ C,
∥∥E[Y 2|D = d ,S = 1,X ]

∥∥
∞
≤ C2,

(b) Pr(ε ≤ pd0(X)≤ 1− ε) = 1, Pr(ε ≤ π0(d ,X)) = 1,

(c) ∥Y −µ0(d ,1,X)∥2 = E
[
(Y −µ0(d ,1,X))2

] 1
2 ≥ c

(d) Given a random subset I of [n] of size nk = n/K , the nuisance parameter estimator η̂0 = η̂0((Wi)i∈IC )
satisfies the following conditions. With P-probability no less than 1−∆n :

∥η̂0 −η0∥q ≤ C, ∥η̂0 −η0∥2 ≤ δn,

∥p̂d0(X)−1/2∥
∞
≤ 1/2− ε, ∥π̂0(D,X)−1/2∥

∞
≤ 1/2− ε,

∥µ̂0(D,S,X)−µ0(D,S,X)∥2 ×∥p̂d0(X)−p0(X)∥2 ≤ δnn−1/2,

∥µ̂0(D,S,X)−µ0(D,S,X)∥2 ×∥π̂0(D,X)−π0(D,X)∥2 ≤ δnn−1/2.

Go back



Simulation study
Simulation design MAR:

Dimension of X : p = 100, number of simulations: 1000.
ith element in the coefficient vector β is set to 0.4/i2 for i = 1, ...,p.
σ2

X is defined based on setting the covariance of the ith and jth
covariate in X to 0.5|i−j|.
Sample sizes: n = 2,000 and n = 8,000.

γ = 0 and σ2
U,V =

(
1 0
0 1

)
.

DML based on Theorem 1 (henceforth DML MAR) and Theorem 2
(DML IV - uses instrument Z despite satisfaction of MAR).
Estimation based on 3-fold cross-fitting with nuisance terms obtained
by lasso regression.



Simulation study

Results MAR:

Table: Simulation results under MAR

true bias sd RMSE meanSE coverage
n=2000

DML MAR 1.000 0.003 0.060 0.060 0.063 0.939
DML IV 1.000 0.003 0.060 0.060 0.063 0.939
n=8000

DML MAR 1.000 0.012 0.031 0.033 0.034 0.934
DML IV 1.000 0.012 0.031 0.033 0.034 0.939



Simulation study

Simulation design IV:

In a second simulation design, we set γ = 1 and σ2
U,V =

(
1 0.8

0.8 1

)
, such

that selection is nonignorable due to the correlation of U and V .
DML MAR is no longer unbiased, while the bias of DML IV appears to
approach zero as the sample size increases, at the price of somewhat
higher standard deviation than DML MAR.



Simulation study

Results IV:

Table: Simulation results under nonignorable selection

true bias sd RMSE meanSE coverage
n=2000

DML MAR 1.000 -0.120 0.055 0.132 0.052 0.374
DML IV 1.000 -0.020 0.071 0.074 0.065 0.907
n=8000

DML MAR 1.000 -0.116 0.028 0.119 0.027 0.009
DML IV 1.000 0.006 0.040 0.040 0.036 0.915

Go back


