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[...an icebreaker joke here...]



This presentation

Introduction to Double Machine Learning framework

Three applications



Machine learning and causality

ML is (mostly) about prediction.

Prediction is nice, but economists often care more about the underlying
mechanism more.

While ML gives us many great prediction tools, we are often interested in a
certain variable of interest.

Having a lot of information we need to cope with high dimensionality of
covariates.
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Job-seeker went through a training/course. Did it help?

We know a lot about these job-seekers (say 300 variables).

But sample size is small.

We may try LASSO, but it will give us biased estimates.
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Can we make use of the great predictive capabilities of ML algorithms for
improving the estimation of parameters of interest?

This is an area of active research. Here we will discuss one important paper
on DOUBLE MACHINE LEARNING

Victor, Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C.,
Newey, W., & Robins, J.: ”Double/debiased machine learning for treatment
and structural parameters.” The Econometrics Journal 21.1 (2018): C1-C68.



Double machine learning

Victor, Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. : ”Double/debiased machine learning for treatment

and structural parameters.” The Econometrics Journal 21.1 (2018): C1-C68.



Double Machine Learning framework
Example: Consider the following partially linear model. θ is the parameter
of interest.

Y = θD+g(X)+U, E [U|D,X ] = 0

D = m(X)+V , E [V |X ] = 0

Split the data into two parts
Use the first one to get ĝ by some ML algorithm (LASSO, RF)
Use the second portion of data to get θ̂ from regressing Y − ĝ(X) on D

θ̂1 =

(
1
n ∑

i
D2

i

)−1
1
n ∑

i
Di(Yi − ĝ(Xi))

θ̂1 is based on E [ψ1] = 0 where ψ1 = D(Y −g(X)−θD)
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Double Machine Learning framework
How does this naive estimator behave?

√
n(θ̂1−θ )=

(
1
n ∑

i
D2

i

)−1
1√
n ∑

i
DiUi︸ ︷︷ ︸

Nicely behaved, approx. Gaussian

+

(
1
n ∑

i
D2

i

)−1
1√
n ∑

i
Di(g(Xi)− ĝ(Xi))︸ ︷︷ ︸

In general divergent.

Why?(
1
n ∑

i
D2

i

)−1
1√
n ∑

i
Di(g(Xi)− ĝ(Xi)) =

(
E[D2

i ]
)−1 1√

n ∑
i

mi(Xi)︸ ︷︷ ︸
̸=0

(g(Xi)− ĝ(Xi))︸ ︷︷ ︸
more slowly than

√
n

+oP(1)︸ ︷︷ ︸
→P 0

So it leads to a regularization bias.
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(
E[D2

i ]
)−1 1√

n ∑
i

mi(Xi)︸ ︷︷ ︸
̸=0
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Double Machine Learning framework

Now we do something else.

Instead of ψ1 = D(Y −g(X)−θD) we will base our estimation on different
moment conditions:

ψ2 = V (Y −g(X)−θD) = (D−m(X)) · (Y −g(X)−θD)
ψ3 = V (Y −g(X)−θV ) = (D−m(X)) · (Y −g(X)−θ (D−m(X)))

These moment conditions are somewhat more ”clever” as the problematic
regularization bias part will converge to zero under mild conditions.
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θ̂2 based on ψ2

Split the data into two parts
Use the first one to get ĝ and m̂ by some ML algorithm (LASSO, RF)
Use the second portion of data to get V̂ = D− m̂(X) and use this to get
θ̂2 .....

√
n(θ̂2 −θ ) = a∗︸︷︷︸

Nicely behaved, approx. Gaussian
+ b∗︸︷︷︸

Regularization bias
+ c∗︸︷︷︸

Overfitting bias

Regularization bias : b∗ =
(1

n ∑i D2
i

)−1 1√
n ∑i(m(Xi)− m̂(Xi))(g(Xi)− ĝ(Xi))

Overfitting bias: Sample splitting takes care of this.
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Regularization bias : b∗ =
(1

n ∑i D2
i

)−1 1√
n ∑i(m(Xi)− m̂(Xi)) · (g(Xi)− ĝ(Xi))

ĝ and m̂ no longer need to converge at the rate n−1/2

It is sufficient if they both converge at the rate n−1/4 and this is much much
easier for the ML algorithms.
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θ̂3 based on ψ3

Split the data into two parts
Use the first one to get ĝ and m̂ by some ML algorithm (LASSO, RF)

Use the second portion of data to get V̂ = D− m̂(X) and Ŵ = Y − m̂(X)
and use this to get θ̂3 via regressing Ŵ on V̂

This is, in fact orthogonalization.

We project both D and Y onto space spanned by X . By means of
Frisch-Waugh-Lowell theorem we recover the coefficient of D.

Similar decomposition can be shown. Regularization bias also includes cross
product (m(Xi)− m̂(Xi)) · (g(Xi)− ĝ(Xi))
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and use this to get θ̂3 via regressing Ŵ on V̂
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What makes φ2 and φ3 different from φ1 ???

Regularization bias vanishes under mild conditions.

In other words, φ2 and φ3 are both locally insensitive to some mild
perturbations of m̂, ĝ around m,g.
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Neyman-orthogonality
This local insensitiveness has a name: Neyman-orthogonality.

ψ is a moment condtion
θ is the parameter of interest (target parameter), θ0 is the true one
η is the nuisance parameter, η0 is the true one
W denotes data

∂

∂ r
E [ψ(W ;θ0,η0 + r(η −η0))]

∣∣∣∣
r=0

= 0
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Neyman-orthogonality of ψ2

We will verify that ψ2 satisfy the Neyman-orthogonality condition, while ψ1

does not.
Notation

η = (m,g) is the vector of nuisance parameters, θ0 = (m0,g0) is the true
one
ηr = η0 + r(η −η0).



Neyman-orthogonality of ψ2

ψ2(W ;θ0,ηr ) = (D−m0(X)− r(m(X)−m0(X))) · (Y −g0(X)− r(g(X)−g0(X))−Dθ0)

= (D−m0(X)) · (Y −g0(X)−Dθ0)+

−r(D−m0(X)) · (g(X)−g0(X))

−r(m(X)−m0(X)) · (Y −g0(X)−Dθ0)

+r2(m(X)−m0(X)) · (g(X)−g0(X))

∂

∂ r
E[ψ2(W ;θ0,ηr )] = −E[(D−m0(X)) · (g(X)−g0(X))]

−E[(m(X)−m0(X)) · (Y −g0(X)−Dθ0)]

+2 · r ·E[(m(X)−m0(X)) · (g(X)−g0(X))]

∂

∂ r
E[ψ2(W ;θ0,ηr )]

∣∣∣∣
r=0

= −E[(D−m0(X)) · (g(X)−g0(X))]

−E[(m(X)−m0(X)) · (Y −g0(X)−Dθ0)]
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] = 0

and hence ψ2 is indeed Neyman-orthogonal.
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Neyman-orthogonality of ψ3

Aimilarly as ψ2 but the derivation is a bit longer.
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Overfitting bias

√
n(θ̂2 −θ ) = a∗︸︷︷︸

Nicely behaved, approx. Gaussian
+ b∗︸︷︷︸

Regularization bias
+ c∗︸︷︷︸

Overfitting bias

Overfitting bias may arise from the fact that the same data is used for both
estimation of nuisance functions and target parameter.

We can split the data.

→ But then we loose many observations.

How to fix this? Swap the roles of the two data parts and then average
across them!
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Sample splitting for dealing with overfitting bias
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DML wrap-up (1)

We saw three: θ̂1, θ̂2 and θ̂3.

Based on: ψ1, ψ2 and ψ3.

While ψ1 was locally sensitive to some small changes in the η , the other two
ψ2 and ψ3 were not.

This allows us to get rid of the regularization bias.

Sample-splitting removes the overfitting bias.
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DML wrap-up (2)

Estimator θ̂ based on Neyman-orthogonal moment function ψ

Apply sample splitting
Nuisance parameter estimators are ”good enough”
(e.g. converge at rate at least n−1/4 - so that the regularization bias
vanishes)

We get that (Theorem 1 in Chernozhukov et al. 2019)
√

n(θ̂ −θ )→ N(0,σ2)

Asymptotically normally distributed estimator that is
√

n consistent.
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DML wrap-up (3)

DML provides a framework for developing estimators that:

can handle high-dimensional data
make use of predictive powers of ML
are well behaved under mild conditions
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Heterogeneity of effects

Use Xi to predict estimated effect ∆̂i

Different samples for:
(i) estimation of ∆̂i using DML
(ii) association between Xi and ∆̂i

Wager, Stefan, and Susan Athey. ”Estimation and inference of
heterogeneous treatment effects using random forests.” Journal of the
American Statistical Association 113.523 (2018): 1228-1242.



Limitations - Kitchen sink regression

[proper source should be cited here] Hünermund, Beyers and Caspi (2021)

Hünermund, Paul, Beyers Louw, and Itamar Caspi. ”Double Machine
Learning and Bad Controls–A Cautionary Tale.” arXiv preprint
arXiv:2108.11294 (2021).
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Notation:

Y (d): (Potential) outcome as function of
treatment d

Y - observed outcome
D - observed treatment
X - observed covariates
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D

X

Y

Object of interest:

∆= E [Y (1)−Y (0)]

Indentifying assumptions:
1) Conditional independence of D:
{Y (1),Y (0)}⊥D | X

2) Common support:
Pr(D = d |X = x)> 0
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DML and treatment effects

D

X

Y

Moment function:

ψ(W ;θ0,η) =
I{D = d} · [Y2 −µ(d ,X)]

p(X)
+µ(d ,X)−θ0.

E
[
ψ(W ;θ0,η)

]
= E

[
Y (d)

]
−θ0 = 0

Data: W = (Y ,D,X)

Nuisance functions: η = (p,µ)

p(X)≡ Pr(D = d |X)

µ(D,X)≡ E [Y |D,X ]

also Doubly robust estimator.

Bang, Heejung, and James M. Robins. ”Doubly robust estimation in missing data and causal inference models.” Biometrics 61.4 (2005): 962-973.
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So far, none of this was my work.



DML applications

There are many:



DML applications

mediation analysis (with H. Farbmacher, M. Huber, H. Langen, M.
Spindler )
dynamic treatment effects (with H. Bodory, M. Huber)
sample selection models (with M. Bia, M. Huber)



First application

DML and mediation analysis

Causal mediation analysis with double machine learning (Econometrics Journal, 2022, 25 (2), 277—300, with Helmut Farbmacher, Martin Huber, Henrika

Langen and Martin Spindler)



DML and mediation analysis
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M(d): (Potential) mediator under treatment
d ∈ {0,1}
Y (d ,m): (Potential) outcome as function of
treatment d and mediator m

Y - observed outcome
D - observed treatment
M - observed mediator
X - observed covariates
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DML and mediation analysis
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Objects of interest:

δ (d) = E [Y (d ,M(1))−Y (d ,M(0))]

θ (d) = E [Y (1,M(d))−Y (0,M(d))]

Indentifying assumptions:
1) Conditional independence of D:
{Y (d ′,m), M(d)}⊥D | X

2) Conditional independence of M:
Y (d ′,m)⊥M | D = d , X = x

3) Common support:
Pr(D = d |M = m,X = x)> 0
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DML and mediation analysis
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Y

Moment function:

ψ(W ;θ0,η) =
I{D = d}(1−pd (M,X))

pdm(M,X) ·1−pd (X)
· [Y −µ(d ,M,X)]

+
I{D = 1−d}

1−pd (X)
·
[
µ(d ,M,X)−ω(1−d ,X)

]
+ E

[
µ(d ,M,X)

∣∣∣D = 1−d ,X
]
−θ0.

E
[
ψ(W ;θ0,η)

]
= E

[
Y (d ,M(1−d))

]
−θ0 = 0

Data: W = (Y ,D,M,X)

Nuisance functions: η = (pd ,pdm,µ,ω)

pd(X) = Pr(D = d |X)

pdm(M,X) = Pr(D = d |M,X)

µ(D,M,X) = E(Y |D,M,X)

ω(1−d ,X) = E [µ(d ,M,X)|D = 1−d ,X ]
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DML and mediation analysis: application

Application to NLSY1997:

National Longitudinal Survey of Youth 1997; representative survey of
8,984 individuals born in the years 1980-84 in the U.S.
D: Health insurance coverage at 2006 interview.
M: Routine check-up between 2006 and 2007 interview.
Y : Self-reported general health at 2008 interview (1=excellent; 5=poor).
X : 770 control variables, 601 of which are dummies (incl. 252 dummies
for missing values) measured in or prior to 2005.



Application
Results:

Health insurance coverage appears to moderately improve general
health in the short run among young adults in the U.S. through
mechanisms other than routine checkups.



Second application

DML and dynamic treatment effects

Evaluating (weighted) dynamic treatment effects by double machine learning (forthcoming in Econometrics Journal with Hugo Bodory and Martin Huber)



DML and dynamic treatment effects

D1

X0 D2

X1

Y2

Notation:

Dt , Yt , Xt : Treatment, outcome, covariates in
period t ∈ {0,1,2}
d1,d2 ∈ {0,1, ...,Q}, Q is the number of
non-zero treatments
Treatment sequence D2 ≡ (D1,D2) and
d2 ≡ (d1,d2)

Y2(d2): (Potential) outcome in period 2 under
sequence d2

Covariate sequence X 1 ≡ (X0,X1)
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DML and dynamic treatment effects

D1

X0 D2

X1

Y2

Objects of interest:

E [Y (d2)]−E [Y (d∗
2)]

Indentifying assumptions:
1) Conditional ind. of the first treatment:
Y2(d2)⊥D1|X0, for d2 ∈ {0,1, ...,Q}2

2) Conditional ind. of the second treatment:
Y2(d2)⊥D2|D1,X0,X1, for d2 ∈ {0,1, ...,Q}2.
3) Common support:
Pr(D1 = d1|X0)> 0, Pr(D2 = d2|D1,X 1)> 0
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Moment function:

ψ(W ;θ0,η) =
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pd1 (X0) ·pd2 (d1,X 1)

+
I{D1 = d1} · [µY2 (d2,X 1)−νY2 (d2,X0)]

pd1 (X0)
+ν

Y2 (d2,X0)−θ0.

E
[
ψ(W ;θ0,η)

]
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Y2(d2)

]
−θ0 = 0

Data: W = (Y2,D1,D2,X0,X1)
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I{D1 = d1} · [µY2 (d2,X 1)−νY2 (d2,X0)]

pd1 (X0)
+ν

Y2 (d2,X0)−θ0.

E
[
ψ(W ;θ0,η)

]
= E

[
Y2(d2)

]
−θ0 = 0

Data: W = (Y2,D1,D2,X0,X1)

Nuisance functions: η = (pd1,pd2,µY2,νY2)

pd1(X0)≡ Pr(D1 = d1|X0)

pd2(D1,X 1)≡ Pr(D2 = d2|D1,X 1)

µY2(D2,X 1)≡ E [Y2|D2,X0,X1]

νY2(D2,X0)≡ E [E [Y2|D2,X0,X1]|D1,X0],
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DML and dynamic treatment effects: Simulation study

Data generating process:

Y2 = D1 +D2 +X ′
0βX0 +X ′

1βX1 +U,

D2 = I{0.3D1 +X ′
0βX0 +X ′

1βX1 +V > 0}, D1 = I{X ′
0βX0 +W > 0},

X1 ∼ N(0,Σ1), X0 ∼ N(0,Σ0), U,V ,W ∼ N(0,1), independently of each other.

i-th element in βX0 and βX1 corresponds to 0.4/i4 for i = 1, ...,p.
Σ0 and Σ1 are defined by setting the covariance of the ith and jth
covariate in X0 or X1 to Σb,ij = 0.5|i−j|, with b ∈ {0,1}.



DML and dynamic treatment effects: Simulation study

covar- sample true absolute standard average RMSE coverage
iates size effect bias deviation SE in %

ATE: ∆̂(d2,d
∗
2) (all)

50 2500 2 0.027 0.07 0.069 0.075 91.6
50 10000 2 0.007 0.035 0.034 0.036 94.4

100 2500 2 0.04 0.072 0.069 0.083 88.7
100 10000 2 0.011 0.035 0.034 0.037 94.4
500 2500 2 0.063 0.07 0.068 0.094 83.4
500 10000 2 0.019 0.035 0.034 0.04 90.0



DML and dynamic treatment effects: Simulation study



DML and dynamic treatment effects: Application

Application to Job Corps experimental study:

Sample comes from the Job Corps experimental study conducted in
mid-90’s, see Schochet et all (2008): 11313 young individuals with
completed interviews four years after randomization (6828 assigned to
Job Corps, 4485 randomized out).
Outcome is employment four years after randomization.
Treatment sequences are based on participation in academic or
vocational training in the first or second year after randomization
among those randomized in.



DML and dynamic treatment effects: Application

Dynamic treatments Job Corps Observations
code year 1 year 2
00 no educ/train no educ/train no 4485
11 no educ/train no educ/train yes 320
12 no educ/train acad educ yes 43
13 no educ/train voc train yes 42
21 acad educ no educ/train yes 1328
22 acad educ acad educ yes 341
23 acad educ voc train yes 183
31 voc train no educ/train yes 1279
32 voc train acad educ yes 109
33 voc train voc train yes 573
missings 2610



DML and dynamic treatment effects: Application
1188 raw characteristics (socio-economic characteristics,
pre-treatment education and training, labor market histories, job search
activities, welfare receipt, health, crime...).

Table: Regressors

Type X0 X1

raw variables
dummy 295 575
categorical 53 13
numeric 26 226
total 374 814
modified for data analysis
dummy 883 1201
numeric 26 226
total 909 1427



DML and dynamic treatment effects: Application

Results (outcome: employment after 4 years):

ATE is estimated in the subsample with first treatment entering one of
the treatment sequences compared.
Random forests and 3-fold cross-validation.



Third application

DML and sample selection models

Double machine learning for sample selection models (arXiv:2012.00745 with Michela Bia and Martin Huber, revision requested)



DML and sample selection models

D

S

X

Y Notation
Y (d): (Potential) outcome under treatment d
∈ {0,1, ...,Q}.
D: Treatment.
Y : Outcome.
S: Selection indicator.
X : Covariates.



DML and sample selection models

D

S

X

Y

Object of interest:

E [Y (d)]−E [Y (d∗)]

Indentifying assumptions:
1) Conditional independence of the treatment):
Y (d)⊥D|X = x

2) Conditional independence of selection:
Y⊥S|D = d ,X = x

3) Common support:
(a) Pr(D = d |X = x)> 0 and (b)
Pr(S = 1|D = d ,X = x)> 0
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DML and sample selection models

D

S

X

Y

Moment function:

ψ(W ;θ0,η) =
I{D = d} ·S · [Y −µ(d ,1,X)]

pd (X) ·π(d ,X)
+µ(d ,1,X)−θ0.

E
[
ψ(W ;θ0,η)

]
= E

[
Y (d)

]
−θ0 = 0

Data: W = (Y .S,S,D,X)

Nuisance functions: η = (pd ,π,µ)

pd(X) = Pr(D = d |X)

π(D,X) = Pr(S = 1|D,X)

µ(D,S,X) = E [Y |D,S,X ]

Reg. conditions Algorithm
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DML and sample selection models
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DML and sample selection models: other frameworks

Two additional setups not considered here.

D

S

X

Y

Z

VU

D

X S

M

Y



DML and sample selection models: Simulation
Data generating process:

Y = D+X ′
β +U with Y being observed if S = 1,

S = I{D+X ′
β +V > 0},

D = I{X ′
β +W > 0},

X ∼ N(0,σ2
X ), (U,V )∼ N(0,σ2

U,V ), W ∼ N(0,1).

ith element in the coefficient vector β is set to 0.4/i2 for i = 1, ...,p.
σ2

X is defined based on setting the covariance of the ith and jth
covariate in X to 0.5|i−j|.

σ2
U,V =

(
1 0
0 1

)
.



DML and sample selection models: Simulation

true bias sd RMSE meanSE coverage
n=2000

DML MAR 1.000 0.003 0.060 0.060 0.063 0.939
n=8000

DML MAR 1.000 0.012 0.031 0.033 0.034 0.934



DML and sample selection models: Application
Job Corps again.

Outcome Y is hourly wage in last week of first year or four years after
randomization, observed conditional on employment S.
Treatment D is participation in academic or vocational training in the
first year after randomization among those randomized in.

Evaluation sample:

Table: Treatment distribution

treatment observations
randomized out of JC 1698
controls (no training) 200

academic training 830
vocational training 843



DML and sample selection models: Application

Table: ATE estimates

D = 1 D = 0 ATE se p-value
Theorem 1 (MAR)

academic no training -0.170 0.253 0.501
vocational no training -0.519 0.405 0.199

Theorem 3 (IV)
academic no training -0.192 0.174 0.705
vocational no training -0.537 0.404 0.199

Theorem 4 (sequential)
academic no training 0.170 0.117 0.147
vocational no training 0.442 0.096 0.000

We observe small longer-term wage gains in terms of hourly wage.



Recapitulation

DML is a useful framework for estimation under high-dimensional setting.

It can automatically select among many covariates and avoid both
regularization bias (via Neyman-orthogonal score) and overfitting bias (via
cross-fitting) and provide root-n consistent and asymptotically normal
estimator.

I have shown a few instances where DML appears to be empirically relevant
and useful.
(implemented in causalweight R package (Bodory and Huber 2018))
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Thank you for your attention!
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Some additional materials:



Double machine learning
Algorithm 1: Estimation of E [Y (d)]

Let W = {Wi |1 ≤ i ≤ n} with Wi = (Yi ·Si ,Di ,Si ,Xi) for all i denote the set
of observations in an i.i.d. sample of size n.

1 Split W in K subsamples. For each subsample k , let nk denote its size, Wk the set of observations in the
sample and W C

k the complement set of all observations not in k .
2 For each k , use W C

k to estimate the model parameters of the plug-ins µ(D,S = 1,X), pd (X), π(D,X) in order
to predict these plug-ins in Wk , where the predictions are denoted by µ̂k (D,1,X), p̂k

d (X), and π̂k (D,X).
3 For each k , obtain an estimate of the score function (see ψd in (??)) for each observation i in Wk , denoted by

ψ̂k
d ,i :

ψ̂
k
d ,i =

I{Di = d} ·Si · [Yi − µ̂k (d ,1,Xi)]

p̂k
d (Xi) · π̂k (d ,Xi)

+ µ̂
k (d ,1,Xi). (1)

4 Average the estimated scores ψ̂k
d ,i over all observations across all K subsamples to obtain an estimate of

Ψd0 = E[Y (d)] in the total sample, denoted by Ψ̂d = 1/n ∑
K
k=1 ∑

nk
i=1 ψ̂k

d ,i .

Back



Double machine learning (2)
Regularity conditions and root-n consistency:
Assumption 10 (regularity conditions and quality of plug-in parameter
estimates):
For all probability laws P ∈ P, where P is the set of all possible probability
laws the following conditions hold for the random vector (Y ,D,S,X) for
d ∈ {0,1, ...,Q}:

(a) ∥Y∥q ≤ C,
∥∥E[Y 2|D = d ,S = 1,X ]

∥∥
∞
≤ C2,

(b) Pr(ε ≤ pd0(X)≤ 1− ε) = 1, Pr(ε ≤ π0(d ,X)) = 1,

(c) ∥Y −µ0(d ,1,X)∥2 = E
[
(Y −µ0(d ,1,X))2

] 1
2 ≥ c

(d) Given a random subset I of [n] of size nk = n/K , the nuisance parameter estimator η̂0 = η̂0((Wi)i∈IC )
satisfies the following conditions. With P-probability no less than 1−∆n :

∥η̂0 −η0∥q ≤ C, ∥η̂0 −η0∥2 ≤ δn,

∥p̂d0(X)−1/2∥
∞
≤ 1/2− ε, ∥π̂0(D,X)−1/2∥

∞
≤ 1/2− ε,

∥µ̂0(D,S,X)−µ0(D,S,X)∥2 ×∥p̂d0(X)−p0(X)∥2 ≤ δnn−1/2,

∥µ̂0(D,S,X)−µ0(D,S,X)∥2 ×∥π̂0(D,X)−π0(D,X)∥2 ≤ δnn−1/2.
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